Suppr超能文献

病理性 DNA 碱基切除修复导致细胞质染色体断裂。

Breakage of cytoplasmic chromosomes by pathological DNA base excision repair.

机构信息

Howard Hughes Medical Institute, Chevy Chase, MD, USA.

Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

出版信息

Nature. 2022 Jun;606(7916):930-936. doi: 10.1038/s41586-022-04767-1. Epub 2022 Apr 27.

Abstract

Chromothripsis is a catastrophic mutational process that promotes tumorigenesis and causes congenital disease. Chromothripsis originates from aberrations of nuclei called micronuclei or chromosome bridges. These structures are associated with fragile nuclear envelopes that spontaneously rupture, leading to DNA damage when chromatin is exposed to the interphase cytoplasm. Here we identify a mechanism explaining a major fraction of this DNA damage. Micronuclei accumulate large amounts of RNA-DNA hybrids, which are edited by adenine deaminases acting on RNA (ADAR enzymes) to generate deoxyinosine. Deoxyinosine is then converted into abasic sites by a DNA base excision repair (BER) glycosylase, N-methyl-purine DNA glycosylase (MPG). These abasic sites are cleaved by the BER endonuclease, apurinic/apyrimidinic endonuclease (APE1), creating single-stranded DNA nicks that can be converted to DNA double strand breaks by DNA replication or when closely spaced nicks occur on opposite strands. This model predicts that MPG should be able to remove the deoxyinosine base from the DNA strand of RNA-DNA hybrids, which we demonstrate using purified proteins and oligonucleotide substrates. These findings identify a mechanism for fragmentation of micronuclear chromosomes, an important step in generating chromothripsis. Rather than breaking any normal chromosome, we propose that the eukaryotic cytoplasm only damages chromosomes with pre-existing defects such as the DNA base abnormality described here.

摘要

染色质碎裂是一种灾难性的突变过程,可促进肿瘤发生并导致先天性疾病。染色质碎裂源自称为微核或染色体桥的核异常。这些结构与脆弱的核膜有关,核膜会自发破裂,当染色质暴露于细胞间质时会导致 DNA 损伤。在这里,我们确定了一种解释这种 DNA 损伤主要部分的机制。微核积累了大量的 RNA-DNA 杂交体,这些杂交体由作用于 RNA 的腺嘌呤脱氨酶(ADAR 酶)编辑,产生脱氧肌苷。然后,脱氧肌苷通过 DNA 碱基切除修复(BER)糖苷酶、N-甲基嘌呤 DNA 糖苷酶(MPG)转化为无碱基位点。这些无碱基位点被 BER 内切酶,即脱嘌呤/脱嘧啶内切酶(APE1)切割,产生单链 DNA 缺口,这些缺口可以通过 DNA 复制或当相反链上的缺口紧密间隔时转化为 DNA 双链断裂。该模型预测 MPG 应该能够从 RNA-DNA 杂交体的 DNA 链上去除脱氧肌苷碱基,我们使用纯化的蛋白质和寡核苷酸底物证明了这一点。这些发现确定了微核染色体碎裂的机制,这是产生染色质碎裂的重要步骤。我们提出,真核细胞质仅破坏具有预先存在缺陷的染色体,例如这里描述的 DNA 碱基异常。

相似文献

7
In vivo measurements of interindividual differences in DNA glycosylases and APE1 activities.体内测量 DNA 糖基化酶和 APE1 活性的个体间差异。
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):E10379-E10388. doi: 10.1073/pnas.1712032114. Epub 2017 Nov 9.
9
A chemical and kinetic perspective on base excision repair of DNA.DNA碱基切除修复的化学与动力学视角
Acc Chem Res. 2014 Apr 15;47(4):1238-46. doi: 10.1021/ar400275a. Epub 2014 Mar 19.

引用本文的文献

4
Chromothripsis.染色体碎裂
Methods Mol Biol. 2025;2968:3-33. doi: 10.1007/978-1-0716-4750-9_1.

本文引用的文献

4
5
Chromothripsis drives the evolution of gene amplification in cancer.染色体重排驱动癌症中基因扩增的进化。
Nature. 2021 Mar;591(7848):137-141. doi: 10.1038/s41586-020-03064-z. Epub 2020 Dec 23.
6
RNA abasic sites in yeast and human cells.酵母和人类细胞中的 RNA 无碱基位点。
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20689-20695. doi: 10.1073/pnas.2011511117. Epub 2020 Aug 11.
8
Nuclear Membrane Rupture and Its Consequences.核膜破裂及其后果。
Annu Rev Cell Dev Biol. 2020 Oct 6;36:85-114. doi: 10.1146/annurev-cellbio-020520-120627. Epub 2020 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验