Suppr超能文献

利用机器学习的致病模型优化 COVID-19 的抗病毒治疗。

Optimizing antiviral therapy for COVID-19 with learned pathogenic model.

机构信息

Department of Electrical & Computer Engineering, Storrs, 06269, USA.

出版信息

Sci Rep. 2022 Apr 27;12(1):6873. doi: 10.1038/s41598-022-10929-y.

Abstract

COVID-19 together with variants have caused an unprecedented amount of mental and economic turmoil with ever increasing fatality and no proven therapies in sight. The healthcare industry is racing to find a cure with multitude of clinical trials underway to access the efficacy of repurposed antivirals, however the much needed insights into the dynamics of pathogenesis of SARS-CoV-2 and corresponding pharmacology of antivirals are lacking. This paper introduces systematic pathological model learning of COVID-19 dynamics followed by derivative free optimization based multi objective drug rescheduling. The pathological model learnt from clinical data of severe COVID-19 patients treated with remdesivir could additionally predict immune T cells response and resulted in a dramatic reduction in remdesivir dose and schedule leading to lower toxicities, however maintaining a high virological efficacy.

摘要

COVID-19 及其变体导致了前所未有的精神和经济混乱,死亡率不断上升,目前尚无经过证实的治疗方法。医疗保健行业正在竞相寻找治疗方法,进行了大量的临床试验,以评估已上市抗病毒药物的疗效,但对抗 SARS-CoV-2 发病机制和相应抗病毒药理学的深入了解仍有所欠缺。本文提出了一种基于无导数优化的多目标药物重新调度的 COVID-19 动力学系统病理模型学习方法。从接受瑞德西韦治疗的重症 COVID-19 患者的临床数据中学习到的病理模型,还可以预测免疫 T 细胞的反应,从而显著减少瑞德西韦的剂量和使用时间,降低毒性,同时保持高病毒学疗效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验