Zamani Marjon, Yang Victoria, Maziashvili Lizi, Fan Gang, Klapperich Catherine M, Furst Ariel L
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.
ACS Meas Sci Au. 2022 Apr 20;2(2):91-95. doi: 10.1021/acsmeasuresciau.1c00042. Epub 2021 Nov 12.
Electrochemical biosensors are promising technologies for detection and monitoring in low-resource settings due to their potential for easy use and low-cost instrumentation. Disposable gold screen-printed electrodes (SPEs) are popular substrates for these biosensors, but necessary dopants in the ink used for their production can interfere with biosensor function and contribute to the heterogeneity of these electrodes. We recently reported an alternative disposable gold electrode made from gold leaf generated using low-cost, equipment-free fabrication. We have directly compared the surface topology, biorecognition element deposition, and functional performance of three disposable gold electrodes: our gold leaf electrodes and two commercial SPEs. Our leaf electrodes significantly outperformed the SPEs for reproducible and effective biosensing in a DNase I assay and are nearly an order of magnitude less expensive than the SPEs. Therefore, these electrodes are promising for further development as point-of-care diagnostics, especially in low-resource settings.
电化学生物传感器因其易于使用和低成本仪器的潜力,是在资源匮乏环境中进行检测和监测的有前途的技术。一次性金丝网印刷电极(SPEs)是这些生物传感器常用的基底,但用于其生产的油墨中的必要掺杂剂会干扰生物传感器功能,并导致这些电极的异质性。我们最近报道了一种由金叶制成的替代一次性金电极,采用低成本、无需设备的制造方法。我们直接比较了三种一次性金电极的表面拓扑结构、生物识别元件沉积和功能性能:我们的金叶电极和两种商业SPEs。在DNase I检测中,我们的金叶电极在可重复和有效的生物传感方面明显优于SPEs,并且比SPEs便宜近一个数量级。因此,这些电极作为即时诊断设备具有进一步开发的潜力,特别是在资源匮乏的环境中。