Suppr超能文献

基于微孔石墨烯的超级电容器中离子积累诱导的电容升高

Ion accumulation-induced capacitance elevation in a microporous graphene-based supercapacitor.

作者信息

Pattanayak Bhaskar, Le Phuoc-Anh, Panda Debashis, Simanjuntak Firman Mangasa, Wei Kung-Hwa, Winie Tan, Tseng Tseung-Yuen

机构信息

Department of Electrical Engineering and Computer Science, National Yang Ming Chiao Tung University Hsinchu City 30010 Taiwan.

Institute of Electronics, National Yang Ming Chiao Tung University Hsinchu City 30010 Taiwan

出版信息

RSC Adv. 2022 Sep 23;12(42):27082-27093. doi: 10.1039/d2ra04194d. eCollection 2022 Sep 22.

Abstract

High-performance porous 3D graphene-based supercapacitors are one of the most promising and challenging directions for future energy technologies. Microporous graphene has been synthesized by the pyrolysis method. The fabricated lightweight graphene with a few layers (FLG) has an ultra-high surface area of 2266 m g along with various-sized micropores. The defect-induced morphology and pore size distribution of the fabricated graphene are examined, and the results show that the micropores vary from 0.85 to 1.9 nm and the 1.02 nm pores contribute 30% of the total surface area. The electrochemical behaviour of the electrode fabricated using this graphene has been studied with various concentrations of the KOH electrolyte. The highest specific capacitance of the graphene electrode of 540 F g (close to the theoretical value, ∼550 F g) can be achieved by using the 1 M KOH electrolyte. This high specific capacitance contribution involves the counter ion adsorption, co-ion desorption, and ion permutation mechanisms. The formation of a Helmholtz layer, as well as the diffusion of the electrolyte ions, confirms this phenomenon. The symmetrical solid-state supercapacitor fabricated with the graphene electrodes and PVA-KOH gel as the electrolyte exhibits excellent energy and power densities of 18 W h kg and 10.2 kW kg, respectively. This supercapacitor also shows a superior 100% coulombic efficiency after 6000 cycles.

摘要

高性能多孔3D石墨烯基超级电容器是未来能源技术中最具前景和挑战性的方向之一。通过热解方法合成了微孔石墨烯。制备的具有几层的轻质石墨烯(FLG)具有2266 m²/g的超高表面积以及各种尺寸的微孔。研究了制备的石墨烯的缺陷诱导形态和孔径分布,结果表明微孔范围为0.85至1.9 nm,1.02 nm的孔占总表面积的30%。使用不同浓度的KOH电解质研究了用这种石墨烯制备的电极的电化学行为。使用1 M KOH电解质可实现石墨烯电极的最高比电容为540 F/g(接近理论值,约550 F/g)。这种高比电容贡献涉及抗衡离子吸附、共离子解吸和离子置换机制。亥姆霍兹层的形成以及电解质离子的扩散证实了这一现象。以石墨烯电极和PVA-KOH凝胶作为电解质制备的对称固态超级电容器分别表现出优异的能量密度和功率密度,分别为18 W h/kg和10.2 kW/kg。该超级电容器在6000次循环后还显示出优异的100%库仑效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e78e/9501667/0c9cef2cf49d/d2ra04194d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验