Vranckx Cédric, Lambricht Laure, Préat Véronique, Cornu Olivier, Dupont-Gillain Christine, Vander Straeten Aurélien
Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium.
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium.
Langmuir. 2022 May 10;38(18):5579-5589. doi: 10.1021/acs.langmuir.2c00191. Epub 2022 Apr 28.
Layer-by-layer (LbL) self-assembly is an attractive method for the immobilization of macromolecules at interfaces. Integrating proteins in LbL thin films is however challenging due to their polyampholyte nature. Recently, we developed a method to integrate lysozyme into multilayers using protein-polyelectrolytes complexes (PPCs). In this work, we extended this method to a wide range of protein-polyelectrolyte combinations. We demonstrated the robustness and versatility of PPCs as building blocks. LL-37, insulin, lysozyme, and glucose oxidase were complexed with alginate, poly(styrenesulfonate), heparin, and poly(allylamine hydrochloride). The resulting PPCs were then LbL self-assembled with chitosan, PAH, and heparin. We demonstrated that multilayers built with PPCs are thicker compared to the LbL self-assembly of bare protein molecules. This is attributed to the higher mass of protein in the multilayers and/or the more hydrated state of the assemblies. PPCs enabled the self-assembly of proteins that could otherwise not be LbL assembled with a PE or with another protein. Furthermore, the results also show that LbL with PPCs enabled the construction of multilayers combining different proteins, highlighting the formation of multifunctional films. Importantly, we show that the adsorption behavior and thus the multilayer growth strongly depend on the nature of the protein and polyelectrolyte used. In this work, we elaborated a rationale to help and guide the use of PPCs for protein LbL assembly. It will therefore be beneficial to the many scientific communities willing to modify interfaces with hard-to-immobilize proteins and peptides.
层层(LbL)自组装是一种在界面固定大分子的有吸引力的方法。然而,由于蛋白质的聚两性电解质性质,将蛋白质整合到LbL薄膜中具有挑战性。最近,我们开发了一种使用蛋白质 - 聚电解质复合物(PPC)将溶菌酶整合到多层膜中的方法。在这项工作中,我们将该方法扩展到了广泛的蛋白质 - 聚电解质组合。我们证明了PPC作为构建单元的稳健性和多功能性。LL-37、胰岛素、溶菌酶和葡萄糖氧化酶与藻酸盐、聚苯乙烯磺酸盐、肝素和聚烯丙基胺盐酸盐复合。然后将所得的PPC与壳聚糖、聚烯丙基胺盐酸盐(PAH)和肝素进行LbL自组装。我们证明,与裸蛋白质分子的LbL自组装相比,用PPC构建的多层膜更厚。这归因于多层膜中蛋白质质量更高和/或组装体的水合状态更高。PPC能够实现那些否则无法与聚电解质或另一种蛋白质进行LbL组装的蛋白质的自组装。此外,结果还表明,使用PPC的LbL能够构建结合不同蛋白质的多层膜,突出了多功能膜的形成。重要的是,我们表明吸附行为以及因此的多层膜生长强烈依赖于所用蛋白质和聚电解质的性质。在这项工作中,我们阐述了一种基本原理,以帮助和指导将PPC用于蛋白质LbL组装。因此,这将有利于许多愿意用难以固定的蛋白质和肽修饰界面的科学界。