Spicher Sebastian, Plett Christoph, Pracht Philipp, Hansen Andreas, Grimme Stefan
Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
J Chem Theory Comput. 2022 May 10;18(5):3174-3189. doi: 10.1021/acs.jctc.2c00239. Epub 2022 Apr 28.
An automated and broadly applicable workflow for the description of solvation effects in an explicit manner is introduced. This method, termed quantum cluster growth (QCG), is based on the semiempirical GFN2-xTB/GFN-FF methods, enabling efficient geometry optimizations and MD simulations. Fast structure generation is provided using the intermolecular force field xTB-IFF. Additionally, the approach uses an efficient implicit solvation model for the electrostatic embedding of the growing clusters. The novel QCG procedure presents a robust cluster generation tool for subsequent application of higher-level (e.g., DFT) methods to study solvation effects on molecular geometries explicitly or to average spectroscopic properties over cluster ensembles. Furthermore, the computation of the solvation free energy with a supermolecular approach can be carried out with QCG. The underlying growing process is physically motivated by computing the leading-order solute-solvent interactions first and can account for conformational and chemical changes due to solvation for low-energy barrier processes. The conformational space is explored with the NCI-MTD algorithm as implemented in the CREST program, using a combination of metadynamics and MD simulations. QCG with GFN2-xTB yields realistic solution geometries and reasonable solvation free energies for various systems without introducing many empirical parameters. Computed IR spectra of some solutes with QCG show a better match to the experimental data compared to well-established implicit solvation models.
本文介绍了一种用于以显式方式描述溶剂化效应的自动化且广泛适用的工作流程。这种方法称为量子簇增长(QCG),基于半经验的GFN2-xTB/GFN-FF方法,能够实现高效的几何结构优化和分子动力学(MD)模拟。利用分子间力场xTB-IFF实现快速结构生成。此外,该方法使用一种高效的隐式溶剂化模型对生长中的簇进行静电嵌入。新颖的QCG程序为后续应用更高级别(例如密度泛函理论,DFT)方法提供了一个强大的簇生成工具,以明确研究溶剂化对分子几何结构的影响,或对簇系综的光谱性质进行平均。此外,利用QCG可以采用超分子方法计算溶剂化自由能。潜在的生长过程首先通过计算溶质-溶剂相互作用的主导项来激发物理机制,并且可以解释低能垒过程中由于溶剂化引起的构象和化学变化。使用CREST程序中实现的NCI-MTD算法,结合元动力学和MD模拟来探索构象空间。采用GFN2-xTB的QCG方法能够为各种体系生成逼真的溶液几何结构和合理的溶剂化自由能,而无需引入许多经验参数。与成熟的隐式溶剂化模型相比,用QCG计算的一些溶质的红外光谱与实验数据的匹配度更高。