Suppr超能文献

过氧化物酶 III 通过清除活性氧和减少糖基化来增强耐盐性。

Glyoxalase III enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation.

机构信息

Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.

Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.

出版信息

Physiol Plant. 2022 May;174(3):e13693. doi: 10.1111/ppl.13693.

Abstract

Methylglyoxal (MG) is a metabolically generated highly cytotoxic compound that accumulates in all living organisms, from Escherichia coli to humans, under stress conditions. To detoxify MG, nature has evolved reduced glutathione (GSH)-dependent glyoxalase and NADPH-dependent aldo-keto reductase systems. But both GSH and NADPH have been reported to be limiting in plants under stress conditions, and thus detoxification might not be performed efficiently. Recently, glyoxalase III (GLY III)-like enzyme activity has been reported from various species, which can detoxify MG without any cofactor. In the present study, we have tested whether an E. coli gene, hchA, encoding a functional GLY III, could provide abiotic stress tolerance to living systems. Overexpression of this gene showed improved tolerance in E. coli and Saccharomyces cerevisiae cells against salinity, dicarbonyl, and oxidative stresses. Ectopic expression of the E. coli GLY III gene (EcGLY-III) in transgenic tobacco plants confers tolerance against salinity at both seedling and reproductive stages as indicated by their height, weight, membrane stability index, and total yield potential. Transgenic plants showed significantly increased glyoxalase and antioxidant enzyme activity that resisted the accumulation of excess MG and reactive oxygen species (ROS) during stress. Moreover, transgenic plants showed more anti-glycation activity to inhibit the formation of advanced glycation end product (AGE) that might prevent transgenic plants from stress-induced senescence. Taken together, all these observations indicate that overexpression of EcGLYIII confers salinity stress tolerance in plants and should be explored further for the generation of stress-tolerant plants.

摘要

甲基乙二醛 (MG) 是一种代谢生成的高细胞毒性化合物,在所有生物体中积累,从大肠杆菌到人类,在应激条件下。为了解毒 MG,自然界进化出了依赖还原型谷胱甘肽 (GSH) 的醛酮还原酶和依赖 NADPH 的醛酮还原酶系统。但据报道,在应激条件下,植物中的 GSH 和 NADPH 都受到限制,因此解毒可能无法有效进行。最近,已经从各种物种中报道了类似甘油醛-3-磷酸脱氢酶 (GLY III) 的酶活性,它可以在没有任何辅助因子的情况下解毒 MG。在本研究中,我们测试了编码功能性 GLY III 的大肠杆菌基因 hchA 是否可以为生物系统提供非生物胁迫耐受性。该基因的过表达显示出对大肠杆菌和酿酒酵母细胞在盐度、二羰基化合物和氧化应激方面的耐受性提高。在转基因烟草植物中外源表达大肠杆菌 GLY III 基因 (EcGLY-III) 可赋予其对盐胁迫的耐受性,表现在幼苗和生殖阶段的高度、重量、膜稳定性指数和总产量潜力。转基因植物表现出明显增加的甘油醛酶和抗氧化酶活性,可抵抗应激过程中过量 MG 和活性氧 (ROS) 的积累。此外,转基因植物表现出更强的抗糖化活性,可抑制晚期糖基化终产物 (AGE) 的形成,从而防止转基因植物因应激引起的衰老。总之,所有这些观察结果表明,EcGLYIII 的过表达赋予了植物对盐胁迫的耐受性,应该进一步探索用于培育抗胁迫植物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验