Suppr超能文献

适用于有限个体患者数据的兼容间接治疗比较的参数 G 计算。

Parametric G-computation for compatible indirect treatment comparisons with limited individual patient data.

机构信息

Department of Statistical Science, University College London, London, UK.

Quantitative Research, Statistical Outcomes Research & Analytics (SORA) Ltd, London, UK.

出版信息

Res Synth Methods. 2022 Nov;13(6):716-744. doi: 10.1002/jrsm.1565. Epub 2022 May 16.

Abstract

Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is based on propensity score weighting, which is sensitive to poor covariate overlap and cannot extrapolate beyond the observed covariate space. Current outcome regression-based alternatives can extrapolate but target a conditional treatment effect that is incompatible in the indirect comparison. When adjusting for covariates, one must integrate or average the conditional estimate over the relevant population to recover a compatible marginal treatment effect. We propose a marginalization method based on parametric G-computation that can be easily applied where the outcome regression is a generalized linear model or a Cox model. The approach views the covariate adjustment regression as a nuisance model and separates its estimation from the evaluation of the marginal treatment effect of interest. The method can accommodate a Bayesian statistical framework, which naturally integrates the analysis into a probabilistic framework. A simulation study provides proof-of-principle and benchmarks the method's performance against MAIC and the conventional outcome regression. Parametric G-computation achieves more precise and more accurate estimates than MAIC, particularly when covariate overlap is poor, and yields unbiased marginal treatment effect estimates under no failures of assumptions. Furthermore, the marginalized regression-adjusted estimates provide greater precision and accuracy than the conditional estimates produced by the conventional outcome regression, which are systematically biased because the measure of effect is non-collapsible.

摘要

当存在试验间效应修饰因素的差异且患者水平数据有限时,人群调整方法(如调整后间接比较的匹配调整法)越来越多地用于比较边缘治疗效果。MAIC 基于倾向评分加权,该方法对协变量重叠不良敏感,并且无法外推至观察到的协变量空间之外。目前基于结果回归的替代方法可以外推,但针对的是间接比较中不兼容的条件治疗效果。在进行协变量调整时,必须在相关人群中对条件估计值进行积分或平均,以恢复兼容的边缘治疗效果。我们提出了一种基于参数 G 计算的边缘化方法,该方法可以在结果回归为广义线性模型或 Cox 模型的情况下轻松应用。该方法将协变量调整回归视为一种干扰模型,并将其估计与感兴趣的边缘治疗效果的评估分开。该方法可以适应贝叶斯统计框架,该框架将分析自然地集成到概率框架中。一项模拟研究提供了原理证明,并将该方法的性能与 MAIC 和常规结果回归进行了基准测试。参数 G 计算比 MAIC 更精确、更准确,尤其是在协变量重叠不良的情况下,并且在没有假设失败的情况下产生无偏的边缘治疗效果估计。此外,边缘化回归调整后的估计值比常规结果回归产生的条件估计值提供更高的精度和准确性,因为常规结果回归的效果衡量是不可 collapsible 的,因此会产生系统偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28de/9790405/bb50156fce31/JRSM-13-716-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验