Shekhar Mrinal, Smith Zachary, Seeliger Markus A, Tiwary Pratyush
Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
Angew Chem Int Ed Engl. 2022 Jul 11;61(28):e202200983. doi: 10.1002/anie.202200983. Epub 2022 May 19.
Understanding how mutations render a drug ineffective is a problem of immense relevance. Often the mechanism through which mutations cause drug resistance can be explained purely through thermodynamics. However, the more perplexing situation is when two proteins have the same drug binding affinities but different residence times. In this work, we demonstrate how all-atom molecular dynamics simulations using recent developments grounded in statistical mechanics can provide a detailed mechanistic rationale for such variances. We discover dissociation mechanisms for the anti-cancer drug Imatinib (Gleevec) against wild-type and the N368S mutant of Abl kinase. We show how this point mutation triggers far-reaching changes in the protein's flexibility and leads to a different, much faster, drug dissociation pathway. We believe that this work marks an efficient and scalable approach to obtain mechanistic insight into resistance mutations in biomolecular receptors that are hard to explain using a structural perspective.
理解突变如何使药物失效是一个极具相关性的问题。通常,突变导致耐药性的机制可以完全通过热力学来解释。然而,更令人困惑的情况是,当两种蛋白质具有相同的药物结合亲和力但驻留时间不同时。在这项工作中,我们展示了如何利用基于统计力学的最新进展进行全原子分子动力学模拟,为这种差异提供详细的机制原理。我们发现了抗癌药物伊马替尼(格列卫)与野生型和Abl激酶的N368S突变体的解离机制。我们展示了这种点突变如何引发蛋白质灵活性的深远变化,并导致不同的、快得多的药物解离途径。我们相信,这项工作标志着一种高效且可扩展的方法,能够深入了解生物分子受体中耐药突变的机制,而这些机制从结构角度很难解释。