Suppr超能文献

上位性选择对自私的超级基因驱动、重组和遗传负荷的影响。

Epistatic selection on a selfish supergene - drive, recombination, and genetic load.

机构信息

Department of Biology, University of Rochester, Rochester, United States.

Ronin Institute, Montclair, United States.

出版信息

Elife. 2022 Apr 29;11:e78981. doi: 10.7554/eLife.78981.

Abstract

Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation resulting in preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing one of a pair of alternative alleles. While at least two loci are important for male drive-the driver and the target-linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, () in the fruit fly, . In African populations, the predominant chromosome variant, , is characterized by two overlapping, paracentric inversions on chromosome arm and nearly perfect (~100%) transmission. We study the system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying , the main driving allele, and one or more factors within the double inversion. While most chromosomes are homozygous lethal, haplotypes can recombine with other, complementing haplotypes via crossing over, and with wildtype chromosomes via gene conversion. chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of haplotypes in different populations around the world and have implications for supergene evolution broadly.

摘要

减数分裂驱动超基因是位于连锁基因座上的等位基因复合体,它们共同颠覆孟德尔分离,导致优先传递。在雄性中,最常见的驱动机制涉及破坏携带一对替代等位基因之一的精子。虽然至少有两个位点对雄性驱动很重要——驱动和目标连锁修饰物可以增强驱动,从而产生抑制重组的选择压力。在这项工作中,我们研究了一种常染色体、多基因座的雄性减数分裂驱动系统()在果蝇中的进化和基因组后果。在非洲人群中,主要的染色体变体()的特征是两条重叠的、旁侧的倒位,位于染色体臂上,并且近乎完美(~100%)传递。我们详细研究了 系统,探索了它的组成、染色体结构和进化历史。我们的发现揭示了最近由强烈的上位性选择介导的染色体尺度选择性清除,这些选择有利于携带主要驱动等位基因和双倒位内一个或多个因子的单倍型。虽然大多数染色体是纯合致死的,但 单倍型可以通过交叉重组与其他互补的单倍型进行重组,也可以通过基因转换与野生型染色体进行重组。然而,染色体已经积累了致死突变、过多的非同义突变和过多的转座元件插入。因此,单倍型作为一个具有强烈选择历史的小、半隔离的亚群体进化。这些结果可以解释不同人群中 单倍型的进化更替,并对超基因进化具有广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a7/9122502/55d00eedb57b/elife-78981-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验