Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Curr Opin Genet Dev. 2023 Aug;81:102082. doi: 10.1016/j.gde.2023.102082. Epub 2023 Jul 3.
The germline produces haploid gametes through a specialized cell division called meiosis. In general, homologous chromosomes from each parent segregate randomly to the daughter cells during meiosis, providing parental alleles with an equal chance of transmission. Meiotic drivers are selfish elements who cheat this process to increase their transmission rate. In female meiosis, selfish centromeres and noncentromeric drivers cheat by preferentially segregating to the egg cell. Selfish centromeres cheat in meiosis I (MI), while noncentromeric drivers can cheat in both meiosis I and meiosis II (MII). Here, we highlight recent advances on our understanding of the molecular mechanisms underlying these genetic cheating strategies, especially focusing on mammalian systems, and discuss new models of how noncentromeric selfish drivers can cheat in MII eggs.
生殖细胞系通过一种称为减数分裂的特殊细胞分裂产生单倍体配子。一般来说,在减数分裂过程中,来自父母双方的同源染色体随机分离到子细胞中,使亲本等位基因有均等的机会传递。减数分裂驱动因子是自私的元件,它们通过欺骗这个过程来增加它们的传递率。在雌性减数分裂中,自私的着丝粒和非着丝粒驱动因子通过优先分配到卵子中而欺骗这个过程。自私的着丝粒在减数分裂 I(MI)中欺骗,而非着丝粒驱动因子可以在减数分裂 I 和减数分裂 II(MII)中欺骗。在这里,我们强调了我们对这些遗传欺骗策略的分子机制的理解的最新进展,特别是专注于哺乳动物系统,并讨论了非着丝粒自私驱动因子如何在 MII 卵子中欺骗的新模型。