IEEE Trans Neural Syst Rehabil Eng. 2022;30:1233-1243. doi: 10.1109/TNSRE.2022.3171394. Epub 2022 May 16.
In the use of real-time myoelectric controlled prostheses, the low accuracy of the user's intention estimation for simultaneous and proportional control (SPC) and the vulnerability to electrode shifts make application to real-world scenarios difficult. To overcome this barrier, we propose a method to estimate muscle unit activation in real time through neurophysiological modeling of the forearm. We also propose a high-performance finger force intention estimation model that is robust to perturbation of electrode placement based on estimated muscle unit activation. We compared the proposed model with previous studies for quantitative validation of finger force intention estimation and electrode shift compensation performance. Compared to other regression-based models in the on/offline test, our model achieved a significantly high intention estimation performance (p < 0.001). In addition, it attained high performance in electrode shift compensation, and at this time, the amount of data required and the number of models utilized were small. In conclusion, the model proposed in this study was verified to be robust to electrode shift and has high finger force intention estimation accuracy.
在实时肌电控制假肢的使用中,用户对同时和比例控制(SPC)的意图估计精度低,以及对电极移位的敏感性,使得其难以应用于实际场景。为了克服这一障碍,我们提出了一种通过对手前臂的神经生理建模来实时估计肌肉单元激活的方法。我们还提出了一种基于估计肌肉单元激活的高性能手指力意图估计模型,该模型对电极放置的扰动具有鲁棒性。我们将提出的模型与以前的研究进行了比较,以定量验证手指力意图估计和电极移位补偿性能。与在线和离线测试中的其他基于回归的模型相比,我们的模型在意图估计性能方面表现出色(p<0.001)。此外,它在电极移位补偿方面也表现出了很高的性能,而且此时所需的数据量和模型数量都很小。总之,本研究提出的模型被验证对电极移位具有鲁棒性,并且手指力意图估计精度高。