Suppr超能文献

用于假肢闭环控制的表面肌电图上经皮电刺激反馈伪迹的实时自适应消除

Real-time adaptive cancellation of TENS feedback artifact on sEMG for prosthesis closed-loop control.

作者信息

Lee Byungwook, Kim Kyung-Soo, Cho Younggeol

机构信息

Department of Mechanical Engineering, Mechatronics Systsems and Control, Korea Advanced Institute of Science and Technology, Deajeon, Republic of Korea.

HRI2, Istituto Italiano di Tecnologia, Genoa, Italy.

出版信息

Front Bioeng Biotechnol. 2024 Nov 21;12:1492588. doi: 10.3389/fbioe.2024.1492588. eCollection 2024.

Abstract

INTRODUCTION

The prosthetic hand has been aimed to restore hand functions by estimating the user's intention via bio-signal and providing sensory feedback. Surface electromyogram (sEMG) is a widely used signal, and transcutaneous electrical nerve stimulation (TENS) is a promising method for sensory feedback. However, TENS currents can transmit through the skin and interfere as noise with the sEMG signals, referred to as "Artifact," which degrades the performance of intention estimation.

METHOD

In this paper, we proposed an adaptive artifact removal method that can cancel artifacts separately across different frequencies and pulse widths of TENS. The modified least-mean-square adaptive filter uses the mean of previous artifacts as reference signals, and compensate using prior information of TENS system. Also temporal separation for artifact discrimination is applied to achieve high artifact removal efficiency. Four sEMG signals-two from flexor digitorum superficialis, flexor carpi ulnaris, extensor carpi ulnaris-was collected to validate signals both offline and online experiments.

RESULTS AND DISCUSSION

We validated the filtering performance with twelve participants performing two experiments: artifact cancellation under variable conditions and a real-time hand control simulation called the target reaching experiment (TRE). The result showed that the Signal-to-Noise Ratio (SNR) increased by an average of 10.3dB, and the performance of four TRE indices recovered to the levels similar to those without TENS. The proposed method can significantly improve signal quality via artifact removal in the context of sensory feedback through TENS in prosthetic systems.

摘要

引言

假肢手旨在通过生物信号估计用户意图并提供感觉反馈来恢复手部功能。表面肌电图(sEMG)是一种广泛使用的信号,经皮电神经刺激(TENS)是一种有前景的感觉反馈方法。然而,TENS电流可透过皮肤并作为噪声干扰sEMG信号,即所谓的“伪迹”,这会降低意图估计的性能。

方法

在本文中,我们提出了一种自适应伪迹去除方法,该方法可以在TENS的不同频率和脉冲宽度上分别消除伪迹。改进的最小均方自适应滤波器使用先前伪迹的均值作为参考信号,并利用TENS系统的先验信息进行补偿。此外,还应用了用于伪迹辨别的时间分离来实现高伪迹去除效率。采集了四个sEMG信号——两个来自指浅屈肌、尺侧腕屈肌、尺侧腕伸肌——以在离线和在线实验中验证信号。

结果与讨论

我们通过12名参与者进行的两个实验验证了滤波性能:可变条件下的伪迹消除以及一个名为目标到达实验(TRE)的实时手部控制模拟。结果表明,信噪比(SNR)平均提高了10.3dB,并且四个TRE指标的性能恢复到了与无TENS时相似的水平。所提出的方法可以在假肢系统中通过TENS进行感觉反馈的情况下,通过去除伪迹显著提高信号质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98fa/11617178/bf1929706a23/fbioe-12-1492588-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验