Suppr超能文献

静电纺丝共混丝素蛋白和明胶甲基丙烯酰复合膜支架复合骨髓间充质干细胞修复兔跟腱缺损。

Co-Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration.

机构信息

State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.

Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, 90095, USA.

出版信息

Small. 2022 May;18(21):e2107714. doi: 10.1002/smll.202107714. Epub 2022 Apr 29.

Abstract

Silk fibroin (SF) is a promising biomaterial for tendon repair, but its relatively rigid mechanical properties and low cell affinity have limited its application in regenerative medicine. Meanwhile, gelatin-based polymers have advantages in cell attachment and tissue remodeling but have insufficient mechanical strength to regenerate tough tissue such as tendons. Taking these aspects into account, in this study, gelatin methacryloyl (GelMA) is combined with SF to create a mechanically strong and bioactive nanofibrous scaffold (SG). The mechanical properties of SG nanofibers can be flexibly modulated by varying the ratio of SF and GelMA. Compared to SF nanofibers, mesenchymal stem cells (MSCs) seeded on SG fibers with optimal composition (SG7) exhibit enhanced growth, proliferation, vascular endothelial growth factor production, and tenogenic gene expression behavior. Conditioned media from MSCs cultured on SG7 scaffolds can greatly promote the migration and proliferation of tenocytes. Histological analysis and tenogenesis-related immunofluorescence staining indicate SG7 scaffolds demonstrate enhanced in vivo tendon tissue regeneration compared to other groups. Therefore, rational combinations of SF and GelMA hybrid nanofibers may help to improve therapeutic outcomes and address the challenges of tissue-engineered scaffolds for tendon regeneration.

摘要

丝素蛋白(SF)是一种很有前途的肌腱修复生物材料,但它相对较硬的机械性能和低细胞亲和力限制了其在再生医学中的应用。同时,基于明胶的聚合物在细胞附着和组织重塑方面具有优势,但机械强度不足以再生像肌腱这样的坚韧组织。考虑到这些方面,在本研究中,将明胶甲基丙烯酰(GelMA)与 SF 结合,制造出一种机械强度高且具有生物活性的纳米纤维支架(SG)。通过改变 SF 和 GelMA 的比例,可以灵活调节 SG 纳米纤维的机械性能。与 SF 纳米纤维相比,在最佳组成(SG7)的 SG 纤维上接种间充质干细胞(MSCs)后,MSCs 的生长、增殖、血管内皮生长因子产生和肌腱形成基因表达行为得到增强。MSCs 培养在 SG7 支架上的条件培养基可以极大地促进肌腱细胞的迁移和增殖。组织学分析和肌腱形成相关免疫荧光染色表明,与其他组相比,SG7 支架在体内肌腱组织再生方面表现出增强的效果。因此,SF 和 GelMA 混合纳米纤维的合理组合可能有助于改善治疗效果,并解决组织工程化支架用于肌腱再生的挑战。

相似文献

引用本文的文献

1
Tendon mechanobiology in the context of tendon biofabrication.肌腱生物制造背景下的肌腱机械生物学
Front Bioeng Biotechnol. 2025 Aug 28;13:1560025. doi: 10.3389/fbioe.2025.1560025. eCollection 2025.
2
Advances and challenges in biomaterials for tendon and enthesis repair.用于肌腱和附着点修复的生物材料的进展与挑战
Bioact Mater. 2025 Feb 20;47:531-545. doi: 10.1016/j.bioactmat.2025.01.001. eCollection 2025 May.
6
Reprogramming tendon healing: a guide to novel molecular tools.重编程肌腱愈合:新型分子工具指南
Front Bioeng Biotechnol. 2024 May 9;12:1379773. doi: 10.3389/fbioe.2024.1379773. eCollection 2024.
7
Advances in the application of hydrogel-based scaffolds for tendon repair.基于水凝胶的支架在肌腱修复中的应用进展。
Genes Dis. 2023 Jul 7;11(4):101019. doi: 10.1016/j.gendis.2023.04.039. eCollection 2024 Jul.
10
Can we achieve biomimetic electrospun scaffolds with gelatin alone?仅用明胶我们就能制备出仿生电纺支架吗?
Front Bioeng Biotechnol. 2023 Jul 12;11:1160760. doi: 10.3389/fbioe.2023.1160760. eCollection 2023.

本文引用的文献

7
Shear mechanosensing drives tendon adaptation.剪切力机械传感驱动肌腱适应性变化。
Nat Biomed Eng. 2021 Dec;5(12):1409-1410. doi: 10.1038/s41551-021-00724-x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验