Suppr超能文献

静电纺丝共混丝素蛋白和明胶甲基丙烯酰复合膜支架复合骨髓间充质干细胞修复兔跟腱缺损。

Co-Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration.

机构信息

State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.

Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, 90095, USA.

出版信息

Small. 2022 May;18(21):e2107714. doi: 10.1002/smll.202107714. Epub 2022 Apr 29.

Abstract

Silk fibroin (SF) is a promising biomaterial for tendon repair, but its relatively rigid mechanical properties and low cell affinity have limited its application in regenerative medicine. Meanwhile, gelatin-based polymers have advantages in cell attachment and tissue remodeling but have insufficient mechanical strength to regenerate tough tissue such as tendons. Taking these aspects into account, in this study, gelatin methacryloyl (GelMA) is combined with SF to create a mechanically strong and bioactive nanofibrous scaffold (SG). The mechanical properties of SG nanofibers can be flexibly modulated by varying the ratio of SF and GelMA. Compared to SF nanofibers, mesenchymal stem cells (MSCs) seeded on SG fibers with optimal composition (SG7) exhibit enhanced growth, proliferation, vascular endothelial growth factor production, and tenogenic gene expression behavior. Conditioned media from MSCs cultured on SG7 scaffolds can greatly promote the migration and proliferation of tenocytes. Histological analysis and tenogenesis-related immunofluorescence staining indicate SG7 scaffolds demonstrate enhanced in vivo tendon tissue regeneration compared to other groups. Therefore, rational combinations of SF and GelMA hybrid nanofibers may help to improve therapeutic outcomes and address the challenges of tissue-engineered scaffolds for tendon regeneration.

摘要

丝素蛋白(SF)是一种很有前途的肌腱修复生物材料,但它相对较硬的机械性能和低细胞亲和力限制了其在再生医学中的应用。同时,基于明胶的聚合物在细胞附着和组织重塑方面具有优势,但机械强度不足以再生像肌腱这样的坚韧组织。考虑到这些方面,在本研究中,将明胶甲基丙烯酰(GelMA)与 SF 结合,制造出一种机械强度高且具有生物活性的纳米纤维支架(SG)。通过改变 SF 和 GelMA 的比例,可以灵活调节 SG 纳米纤维的机械性能。与 SF 纳米纤维相比,在最佳组成(SG7)的 SG 纤维上接种间充质干细胞(MSCs)后,MSCs 的生长、增殖、血管内皮生长因子产生和肌腱形成基因表达行为得到增强。MSCs 培养在 SG7 支架上的条件培养基可以极大地促进肌腱细胞的迁移和增殖。组织学分析和肌腱形成相关免疫荧光染色表明,与其他组相比,SG7 支架在体内肌腱组织再生方面表现出增强的效果。因此,SF 和 GelMA 混合纳米纤维的合理组合可能有助于改善治疗效果,并解决组织工程化支架用于肌腱再生的挑战。

相似文献

1
Co-Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration.
Small. 2022 May;18(21):e2107714. doi: 10.1002/smll.202107714. Epub 2022 Apr 29.
2
Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2021 Jul;126:112181. doi: 10.1016/j.msec.2021.112181. Epub 2021 May 13.
3
Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
Int J Nanomedicine. 2016 Apr 11;11:1483-500. doi: 10.2147/IJN.S97445. eCollection 2016.
5
Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation.
Acta Biomater. 2017 Oct 15;62:102-115. doi: 10.1016/j.actbio.2017.08.043. Epub 2017 Aug 30.
7
[Effect of silk fibroin/poly ( -lactic acid-co-e-caprolactone) nanofibrous scaffold on tendon-bone healing of rabbits].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017 Aug 15;31(8):957-962. doi: 10.7507/1002-1892.201704077.
8
Application potential of three-dimensional silk fibroin scaffold using mesenchymal stem cells for cardiac regeneration.
J Biomater Appl. 2021 Oct;36(4):740-753. doi: 10.1177/08853282211018529. Epub 2021 May 26.
9
10
Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration.
Macromol Biosci. 2023 Feb;23(2):e2200380. doi: 10.1002/mabi.202200380. Epub 2022 Dec 7.

引用本文的文献

1
Tendon mechanobiology in the context of tendon biofabrication.
Front Bioeng Biotechnol. 2025 Aug 28;13:1560025. doi: 10.3389/fbioe.2025.1560025. eCollection 2025.
2
Advances and challenges in biomaterials for tendon and enthesis repair.
Bioact Mater. 2025 Feb 20;47:531-545. doi: 10.1016/j.bioactmat.2025.01.001. eCollection 2025 May.
6
Reprogramming tendon healing: a guide to novel molecular tools.
Front Bioeng Biotechnol. 2024 May 9;12:1379773. doi: 10.3389/fbioe.2024.1379773. eCollection 2024.
7
Advances in the application of hydrogel-based scaffolds for tendon repair.
Genes Dis. 2023 Jul 7;11(4):101019. doi: 10.1016/j.gendis.2023.04.039. eCollection 2024 Jul.
8
Mesoporous Particle Embedded Nanofibrous Scaffolds Sustain Biological Factors for Tendon Tissue Engineering.
ACS Mater Au. 2023 Jul 24;3(6):636-645. doi: 10.1021/acsmaterialsau.3c00012. eCollection 2023 Nov 8.
9
Mesenchymal Stem Cells in Soft Tissue Regenerative Medicine: A Comprehensive Review.
Medicina (Kaunas). 2023 Aug 10;59(8):1449. doi: 10.3390/medicina59081449.
10
Can we achieve biomimetic electrospun scaffolds with gelatin alone?
Front Bioeng Biotechnol. 2023 Jul 12;11:1160760. doi: 10.3389/fbioe.2023.1160760. eCollection 2023.

本文引用的文献

1
Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives.
ACS Appl Bio Mater. 2021 Sep 20;4(9):6630-6646. doi: 10.1021/acsabm.1c00654. Epub 2021 Aug 9.
3
The role of MicroRNAs in tendon injury, repair, and related tissue engineering.
Biomaterials. 2021 Oct;277:121083. doi: 10.1016/j.biomaterials.2021.121083. Epub 2021 Aug 26.
5
Grafting of iPS cell-derived tenocytes promotes motor function recovery after Achilles tendon rupture.
Nat Commun. 2021 Aug 18;12(1):5012. doi: 10.1038/s41467-021-25328-6.
6
Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2021 Jul;126:112181. doi: 10.1016/j.msec.2021.112181. Epub 2021 May 13.
7
Shear mechanosensing drives tendon adaptation.
Nat Biomed Eng. 2021 Dec;5(12):1409-1410. doi: 10.1038/s41551-021-00724-x.
8
Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration.
Adv Healthc Mater. 2021 Apr;10(7):e2001305. doi: 10.1002/adhm.202001305. Epub 2021 Feb 12.
9
Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration.
Mater Sci Eng C Mater Biol Appl. 2021 Feb;119:111506. doi: 10.1016/j.msec.2020.111506. Epub 2020 Sep 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验