Simula Research Laboratory, Oslo, Norway.
Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
Sci Rep. 2022 Apr 29;12(1):7040. doi: 10.1038/s41598-022-11110-1.
In the heart, electrophysiological dysregulation arises from defects at many biological levels (from point mutations in ion channel proteins to gross structural abnormalities). These defects disrupt the normal pattern of electrical activation, producing ectopic activity and reentrant arrhythmia. To interrogate mechanisms that link these primary biological defects to macroscopic electrophysiologic dysregulation most prior computational studies have utilized either (i) detailed models of myocyte ion channel dynamics at limited spatial scales, or (ii) homogenized models of action potential conduction that reproduce arrhythmic activity at tissue and organ levels. Here we apply our recent model (EMI), which integrates electrical activation and propagation across these scales, to study human atrial arrhythmias originating in the pulmonary vein (PV) sleeves. These small structures initiate most supraventricular arrhythmias and include pronounced myocyte-to-myocyte heterogeneities in ion channel expression and intercellular coupling. To test EMI's cell-based architecture in this physiological context we asked whether ion channel mutations known to underlie atrial fibrillation are capable of initiating arrhythmogenic behavior via increased excitability or reentry in a schematic PV sleeve geometry. Our results illustrate that EMI's improved spatial resolution can directly interrogate how electrophysiological changes at the individual myocyte level manifest in tissue and as arrhythmia in the PV sleeve.
在心脏中,电生理失调源于许多生物学层面的缺陷(从离子通道蛋白的点突变到大体结构异常)。这些缺陷破坏了正常的电激活模式,产生异位活动和折返性心律失常。为了探究将这些主要生物学缺陷与宏观电生理失调联系起来的机制,大多数先前的计算研究都利用了以下方法:(i)在有限的空间尺度上对心肌细胞离子通道动力学进行详细建模,或(ii)对动作电位传导进行均匀化建模,以在组织和器官水平上再现心律失常活动。在这里,我们应用我们最近的模型(EMI),该模型整合了这些尺度上的电激活和传播,以研究起源于肺静脉(PV)袖套的人类心房心律失常。这些小结构引发了大多数室上性心律失常,并且在离子通道表达和细胞间耦合方面存在明显的细胞间异质性。为了在生理环境中测试 EMI 的基于细胞的架构,我们询问了是否已知导致心房颤动的离子通道突变是否能够通过增加兴奋性或折返在示意性的 PV 袖套几何形状中引发致心律失常行为。我们的结果表明,EMI 提高的空间分辨率可以直接探究个体心肌细胞水平的电生理变化如何在组织中表现出来,并以 PV 袖套中的心律失常表现出来。