Suppr超能文献

牙本质涎磷蛋白(DSPP)的多变量与单变量频谱分析在预测牙根吸收中的应用:一项临床试验。

Multivariate versus univariate spectrum analysis of dentine sialophosphoprotein (DSPP) for root resorption prediction: a clinical trial.

机构信息

MIMOS Berhad, Technology Park Malaysia, 57000, Kuala Lumpur, Malaysia.

Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.

出版信息

BMC Oral Health. 2022 Apr 29;22(1):151. doi: 10.1186/s12903-022-02178-2.

Abstract

BACKGROUND

A force applied during orthodontic treatment induces inflammation to root area and lead to root resorption known as orthodontically induced inflammatory root resorption (OIIRR). Dentine sialophosphoprotein (DSPP) is one of the most abundant non-collagenous proteins in dentine that was released into gingival crevicular fluid (GCF) during OIIRR. The aim of this research is to compare DSPP detection using the univariate and multivariate analysis in predicting classification level of root resorption.

METHODS

The subjects for this study consisted of 30 patients in 3 group classified as normal, mild, and severe groups of OIIRR. The GCF samples were taken from upper permanent central incisors in the normal and mild group while the upper primary second molars in the severe group. The DSPP qualitative detection limit was determined by analyzing the whole absorption spectrum utilizing multivariate analysis embedded with different preprocessing method. The multivariate analysis represents the multi-wavelength spectrum while univariate analyzes the absorption of a single wavelength.

RESULTS

The results showed that the multivariate analysis technique using partial least square-discriminate analysis (PLS-DA) with the preprocess method has successfully improved in classification prediction for the normal and mild group at 0.88 percent accuracy. The multivariate using PLS-DA algorithm with Mean Center preprocess method was able to predict normal and mild tooth resorption classes better than the univariate analysis. The classification parameters have improved in term of the specificity, precision and accuracy.

CONCLUSION

Therefore, the multivariate analysis helps to predict an early detection of tooth resorption complimenting the sensitivity of the univariate analysis. Trial registration NCT05077878 (14/10/2021).

摘要

背景

正畸治疗过程中施加的力会引起根尖区域的炎症,导致牙骨质吸收,即正畸诱导的炎症性牙根吸收(OIIRR)。牙本质涎磷蛋白(DSPP)是牙本质中含量最丰富的非胶原蛋白之一,在 OIIRR 期间会释放到龈沟液(GCF)中。本研究旨在比较使用单变量和多变量分析检测 DSPP 对根吸收分类水平的预测能力。

方法

本研究的对象包括 30 名患者,分为正常、轻度和重度 OIIRR 三组。GCF 样本取自正常和轻度组的上颌恒中切牙,重度组的上颌乳第二磨牙。利用多元分析嵌入不同预处理方法,分析全吸收光谱来确定 DSPP 定性检测的下限。多元分析代表多波长光谱,而单变量分析则分析单一波长的吸收。

结果

结果表明,使用偏最小二乘判别分析(PLS-DA)与预处理方法的多元分析技术,成功地提高了正常和轻度组的分类预测准确性,达到了 0.88%。使用 Mean Center 预处理方法的多元 PLS-DA 算法能够更好地预测正常和轻度的牙齿吸收类别,优于单变量分析。分类参数在特异性、精度和准确性方面都有所提高。

结论

因此,多元分析有助于预测牙齿吸收的早期检测,补充了单变量分析的敏感性。试验注册号 NCT05077878(2021 年 10 月 14 日)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6b5/9052525/d70a9b3f2429/12903_2022_2178_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验