Suppr超能文献

微电极阵列膜可同时评估暴露于化学物质和环境变化下的非洲爪蟾的心脏和神经信号。

Microelectrode array membranes to simultaneously assess cardiac and neurological signals of xenopus laevis under chemical exposures and environmental changes.

机构信息

Department of Electrical Engineering and Computer Science, UC Irvine, Irvine, CA, 92697, USA.

Donald Bren School of Information and Computer Sciences, UC Irvine, CA, 92697, USA.

出版信息

Biosens Bioelectron. 2022 Aug 15;210:114292. doi: 10.1016/j.bios.2022.114292. Epub 2022 Apr 22.

Abstract

Simultaneous monitoring of electrocardiogram (ECG) and electroencephalogram (EEG) in studied animal models requires innovative engineering techniques that can capture minute physiological changes. However, this is often administered with a bulky and/or invasive system that may cause discomfort to animals and signal distortions. Here, we develop an integrated bioelectronic sensing system to provide simultaneous recordings of ECG and EEG in real-time for Xenopus laevis. The microelectrode array (MEA) membrane and the distinct anatomy of Xenopus offer noninvasive multi-modal electrophysiological monitoring with favorable spatial resolution. The system was validated under different environmental conditions, including drug exposure and temperature changes. Under the exposure of Pentylenetetrazol (PTZ), an epilepsy-inducing drug, clear ECG and EEG alterations, including frequent ictal and interictal EEG events, 30 dB average EEG amplitude elevations, abnormal ECG morphology, and heart rate changes, were observed. Furthermore, the ECG and EEG were monitored and analyzed under different temperatures. A decrease in relative power of delta band was observed when cold environment was brought about, in contrast to an increase in relative power of other higher frequency bands while the ECG remained stable. Overall, the real-time electrophysiology monitoring system using the Xenopus model holds potential for many applications in drug screening and remote environmental monitoring.

摘要

在研究动物模型中同时监测心电图 (ECG) 和脑电图 (EEG) 需要创新的工程技术,以捕捉微小的生理变化。然而,这通常需要使用体积庞大和/或侵入性的系统,这可能会给动物带来不适并导致信号失真。在这里,我们开发了一种集成的生物电子传感系统,用于实时提供 Xenopus laevis 的 ECG 和 EEG 同步记录。微电极阵列 (MEA) 膜和 Xenopus 的独特解剖结构提供了非侵入性的多模态电生理监测,具有良好的空间分辨率。该系统在不同的环境条件下进行了验证,包括药物暴露和温度变化。在戊四氮 (PTZ) 暴露下,一种诱发癫痫的药物,明显的 ECG 和 EEG 改变,包括频繁的发作性和发作间期 EEG 事件,30dB 的平均 EEG 幅度升高,异常 ECG 形态和心率变化,被观察到。此外,在不同的温度下监测和分析了 ECG 和 EEG。当引入寒冷环境时,观察到 delta 波段的相对功率下降,而其他较高频率波段的相对功率增加,而 ECG 保持稳定。总的来说,使用 Xenopus 模型的实时电生理监测系统在药物筛选和远程环境监测等许多应用中具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验