Suppr超能文献

基于长链非编码 RNA 和患者临床特征构建列线图以改善非小细胞肺癌的预后。

Construction of a Nomogram Based on lncRNA and Patient's Clinical Characteristics to Improve the Prognosis of Non-Small Cell Lung Cancer.

机构信息

Departments of Oncology, 159367The First Affiliated Hospital of Xinxiang Medical University, Henan, China.

Departments of Tuberculosis, 159367The First Affiliated Hospital of Xinxiang Medical University, Henan, China.

出版信息

Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221097215. doi: 10.1177/15330338221097215.

Abstract

Although the American Joint Commission on Cancer (AJCC) staging has been widely used to predict the survival of cancer patients, there are still some limitations. The high accuracy of lncRNA-based signature prediction has attracted widespread attention. The data were obtained from the RNA sequencing data of nonsmall cell lung cancer (NSCLC) in the Cancer Genome Atlas (TCGA) database. Differentially expressed lncRNAs (DELs) and differentially expressed mRNAs (DEMs) were identified. Using univariate Cox proportional hazard regression (CPHR) analysis, least absolute shrinkage and selection operator method, and multivariate CPHR, 5 lncRNAs (LINC00460, LINC00857, LINC01116, RP11-253E3.3, and RP11-359E19.2) related to patient survival were successfully screened. Combined with age, gender, AJCC staging, and 5 lncRNAs, a nomogram with a better prognosis prediction ability than traditional parameters was constructed. Prognostic accuracy was evaluated using the receiver operating characteristic (ROC) curve and area under the ROC value. In addition, through co-expression analysis, we found that 5 lncRNA target genes have 34 DEMs. Gene ontology function analysis showed that these DEMs were mainly enriched in enzyme inhibitor activity and other aspects. Finally, these DEMs were found to be involved in the formation of the tumor immune microenvironment. In short, the nomogram based on 5 lncRNAs can effectively predict the overall survival rate of NSCLC and may guide the formulation of treatment plans for NSCLC.

摘要

尽管美国癌症联合委员会(AJCC)分期已被广泛用于预测癌症患者的生存情况,但仍存在一些局限性。基于长链非编码 RNA(lncRNA)的特征预测具有较高的准确性,引起了广泛关注。该数据来自癌症基因组图谱(TCGA)数据库中 NSCLC 的 RNA 测序数据。通过差异表达 lncRNA(DEL)和差异表达 mRNA(DEM)鉴定,采用单因素 Cox 比例风险回归(CPHR)分析、最小绝对值收缩和选择算子法、多因素 CPHR,成功筛选出与患者生存相关的 5 个 lncRNA(LINC00460、LINC00857、LINC01116、RP11-253E3.3 和 RP11-359E19.2)。结合年龄、性别、AJCC 分期和 5 个 lncRNA,构建了一个比传统参数具有更好预后预测能力的列线图。通过接受者操作特征(ROC)曲线和 ROC 曲线下面积来评估预后准确性。此外,通过共表达分析,我们发现 5 个 lncRNA 靶基因有 34 个 DEM。基因本体功能分析表明,这些 DEM 主要富集在酶抑制剂活性等方面。最后,发现这些 DEM 参与了肿瘤免疫微环境的形成。总之,基于 5 个 lncRNA 的列线图可有效预测 NSCLC 的总生存率,可能为 NSCLC 治疗方案的制定提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a666/9067035/875388570924/10.1177_15330338221097215-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验