Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.
Department of Chemistry , University of California , Berkeley , California 94720 , United States.
Nano Lett. 2018 Oct 10;18(10):6427-6433. doi: 10.1021/acs.nanolett.8b02819. Epub 2018 Sep 28.
Formation mechanisms of dendrite structures have been extensively explored theoretically, and many theoretical predictions have been validated for micro- or macroscale dendrites. However, it is challenging to determine whether classical dendrite growth theories are applicable at the nanoscale due to the lack of detailed information on the nanodendrite growth dynamics. Here, we study iron oxide nanodendrite formation using liquid cell transmission electron microscopy (TEM). We observe "seaweed"-like iron oxide nanodendrites growing predominantly in two dimensions on the membrane of a liquid cell. By tracking the trajectories of their morphology development with high spatial and temporal resolution, it is possible to explore the relationship between the tip curvature and growth rate, tip splitting mechanisms, and the effects of precursor diffusion and depletion on the morphology evolution. We show that the growth of iron oxide nanodendrites is remarkably consistent with the existing theoretical predictions on dendritic morphology evolution during growth, despite occurring at the nanoscale.
树枝状结构的形成机制已经在理论上得到了广泛的探索,并且已经有许多针对微观或宏观尺度树枝状结构的理论预测得到了验证。然而,由于缺乏关于纳米树枝状生长动力学的详细信息,因此很难确定经典的树枝状生长理论是否适用于纳米尺度。在这里,我们使用液体池透射电子显微镜(TEM)研究了氧化铁纳米树枝状结构的形成。我们观察到“海藻状”氧化铁纳米树枝状结构主要在液体池的膜上二维生长。通过以高时空分辨率跟踪其形态发展的轨迹,可以探索尖端曲率和生长速率之间的关系、尖端分裂机制以及前体扩散和耗尽对形态演变的影响。我们表明,氧化铁纳米树枝状结构的生长与在生长过程中树枝状形态演变的现有理论预测非常一致,尽管是在纳米尺度上发生的。