Suppr超能文献

通过原位液芯电子显微镜揭示溶液生长中纳米枝晶形成的动力学。

Dynamics of Nanoscale Dendrite Formation in Solution Growth Revealed Through in Situ Liquid Cell Electron Microscopy.

机构信息

Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.

Department of Chemistry , University of California , Berkeley , California 94720 , United States.

出版信息

Nano Lett. 2018 Oct 10;18(10):6427-6433. doi: 10.1021/acs.nanolett.8b02819. Epub 2018 Sep 28.

Abstract

Formation mechanisms of dendrite structures have been extensively explored theoretically, and many theoretical predictions have been validated for micro- or macroscale dendrites. However, it is challenging to determine whether classical dendrite growth theories are applicable at the nanoscale due to the lack of detailed information on the nanodendrite growth dynamics. Here, we study iron oxide nanodendrite formation using liquid cell transmission electron microscopy (TEM). We observe "seaweed"-like iron oxide nanodendrites growing predominantly in two dimensions on the membrane of a liquid cell. By tracking the trajectories of their morphology development with high spatial and temporal resolution, it is possible to explore the relationship between the tip curvature and growth rate, tip splitting mechanisms, and the effects of precursor diffusion and depletion on the morphology evolution. We show that the growth of iron oxide nanodendrites is remarkably consistent with the existing theoretical predictions on dendritic morphology evolution during growth, despite occurring at the nanoscale.

摘要

树枝状结构的形成机制已经在理论上得到了广泛的探索,并且已经有许多针对微观或宏观尺度树枝状结构的理论预测得到了验证。然而,由于缺乏关于纳米树枝状生长动力学的详细信息,因此很难确定经典的树枝状生长理论是否适用于纳米尺度。在这里,我们使用液体池透射电子显微镜(TEM)研究了氧化铁纳米树枝状结构的形成。我们观察到“海藻状”氧化铁纳米树枝状结构主要在液体池的膜上二维生长。通过以高时空分辨率跟踪其形态发展的轨迹,可以探索尖端曲率和生长速率之间的关系、尖端分裂机制以及前体扩散和耗尽对形态演变的影响。我们表明,氧化铁纳米树枝状结构的生长与在生长过程中树枝状形态演变的现有理论预测非常一致,尽管是在纳米尺度上发生的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验