文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于磁性靶向和高效捕获革兰氏阳性菌及革兰氏阴性菌的万古霉素共轭氧化铁纳米颗粒。

Vancomycin conjugated iron oxide nanoparticles for magnetic targeting and efficient capture of Gram-positive and Gram-negative bacteria.

作者信息

Rashid Mehnaz, Rabbi Md Ahasanur, Ara Tabassum, Hossain Md Motahar, Islam Md Shahidul, Elaissari Abdelhamid, Ahmad Hasan, Rahman Md Mahbubor

机构信息

Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh

Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh.

出版信息

RSC Adv. 2021 Nov 10;11(57):36319-36328. doi: 10.1039/d1ra04390k. eCollection 2021 Nov 4.


DOI:10.1039/d1ra04390k
PMID:35492746
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9043335/
Abstract

Drug conjugated iron oxide magnetite (FeO) nanoparticles are of great interest in the field of biomedicine. In this study, vancomycin (Van) conjugated magnetite (FeO) nanoparticles were envisioned to capture and inhibit the growth of bacteria. Hydrophobic FeO nanoparticles were synthesized by using co-precipitation of ferrous (Fe) and ferric (Fe) ions following a surface modification step with oleic acid as stabilizers. Thereafter, a ligand exchange technique was employed to displace oleic acid with hydrophilic dopamine (DOPA) molecules which have a catechol group for anchoring to the iron oxide surface to prepare water dispersible nanoparticles. The surface of the resulting FeO/DOPA nanoparticles contains amino (-NH) groups that are conjugated with vancomycin a coupling reaction between the -NH group of dopamine and the -COOH group of vancomycin. The prepared vancomycin conjugated FeO/DOPA nanoparticles were named FeO/DOPA/Van and exhibited a magnetic response to an external magnetic field due to the presence of magnetite FeO in the core. The FeO/DOPA/Van nanoparticles showed bactericidal activity against both Gram positive () and and Gram-negative bacteria (. ). Maximum inhibition zones of 22 mm, 19 mm and 18 mm were found against , and respectively. Most importantly, the vancomycin conjugated nanoparticles were effectively bound to the cell wall of the bacteria, promoting bacterial separation and growth inhibition. Therefore, the prepared FeO/DOPA/Van nanoparticles can be promising for effective bacterial separation and killing in the dispersion media.

摘要

药物缀合的氧化铁磁铁矿(FeO)纳米颗粒在生物医学领域备受关注。在本研究中,设想用万古霉素(Van)缀合的磁铁矿(FeO)纳米颗粒来捕获并抑制细菌生长。通过亚铁(Fe)和铁(Fe)离子的共沉淀法合成疏水性FeO纳米颗粒,随后用油酸作为稳定剂进行表面改性。之后,采用配体交换技术,用具有邻苯二酚基团的亲水性多巴胺(DOPA)分子取代油酸,该基团可锚定在氧化铁表面,以制备水分散性纳米颗粒。所得FeO/DOPA纳米颗粒的表面含有与万古霉素缀合的氨基(-NH)基团,这是多巴胺的-NH基团与万古霉素的-COOH基团之间的偶联反应。制备的万古霉素缀合的FeO/DOPA纳米颗粒命名为FeO/DOPA/Van,由于核心中存在磁铁矿FeO,其对外加磁场表现出磁响应。FeO/DOPA/Van纳米颗粒对革兰氏阳性菌()和革兰氏阴性菌()均表现出杀菌活性。对、和的最大抑菌圈分别为22mm、19mm和18mm。最重要的是,万古霉素缀合的纳米颗粒能有效结合到细菌细胞壁上,促进细菌分离并抑制其生长。因此,制备的FeO/DOPA/Van纳米颗粒有望在分散介质中有效分离和杀灭细菌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/4ca576c380a2/d1ra04390k-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/9a6bc2fc6003/d1ra04390k-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/0fa4868cb172/d1ra04390k-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/a6c658e82822/d1ra04390k-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/eea2798065aa/d1ra04390k-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/3f3104bccf70/d1ra04390k-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/417b605d61d9/d1ra04390k-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/9863e8158fd3/d1ra04390k-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/cae64583b935/d1ra04390k-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/7b776a813053/d1ra04390k-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/4ca576c380a2/d1ra04390k-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/9a6bc2fc6003/d1ra04390k-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/0fa4868cb172/d1ra04390k-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/a6c658e82822/d1ra04390k-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/eea2798065aa/d1ra04390k-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/3f3104bccf70/d1ra04390k-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/417b605d61d9/d1ra04390k-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/9863e8158fd3/d1ra04390k-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/cae64583b935/d1ra04390k-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/7b776a813053/d1ra04390k-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab1/9043335/4ca576c380a2/d1ra04390k-f9.jpg

相似文献

[1]
Vancomycin conjugated iron oxide nanoparticles for magnetic targeting and efficient capture of Gram-positive and Gram-negative bacteria.

RSC Adv. 2021-11-10

[2]
Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for near-infrared photothermal ablation of bacteria.

Acta Biomater. 2013-3-25

[3]
Vancomycin-modified FeO@SiO@Ag microflowers as effective antimicrobial agents.

Int J Nanomedicine. 2017-4-13

[4]
Efficient bacterial capture with amino acid modified magnetic nanoparticles.

Water Res. 2013-12-10

[5]
Efficient bacteria capture and inactivation by cetyltrimethylammonium bromide modified magnetic nanoparticles.

Colloids Surf B Biointerfaces. 2015-10-22

[6]
Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.

Int J Nanomedicine. 2018-2-27

[7]
Antibacterial Silver-Conjugated Magnetic Nanoparticles: Design, Synthesis and Bactericidal Effect.

Pharm Res. 2019-8-14

[8]
Cytotoxic consequences of Halloysite nanotube/iron oxide nanocomposite and iron oxide nanoparticles upon interaction with bacterial, non-cancerous and cancerous cells.

Colloids Surf B Biointerfaces. 2018-5-19

[9]
T4 bacteriophage conjugated magnetic particles for E. coli capturing: Influence of bacteriophage loading, temperature and tryptone.

Colloids Surf B Biointerfaces. 2017-3-1

[10]
Antibacterial effects of iron oxide (FeO) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms.

Appl Microbiol Biotechnol. 2019-2-1

引用本文的文献

[1]
Combating Antimicrobial Resistance: Innovative Strategies Using Peptides, Nanotechnology, Phages, Interference, and CRISPR-Cas Systems.

Pharmaceuticals (Basel). 2025-7-27

[2]
Magnetite-Assisted Capture Affinity, Concentration Dependence, and Magnetic Extraction Rate of .

Microorganisms. 2025-5-22

[3]
Next-Gen Nano Biosensor Technologies to Monitor Carbapenem Resistance for Personalized Medicine.

Indian J Microbiol. 2025-3

[4]
High-Throughput Shotgun Metagenomics of Microbial Footprints Uncovers a Cocktail of Noxious Antibiotic Resistance Genes in the Winam Gulf of Lake Victoria, Kenya.

J Trop Med. 2024-12-23

[5]
Recent advances in nanostructured delivery systems for vancomycin.

Nanomedicine (Lond). 2024

[6]
Antibiotic-Loaded Nano-Sized Delivery Systems: An Insight into Gentamicin and Vancomycin.

J Funct Biomater. 2024-7-15

[7]
Intelligent electrospinning nanofibrous membranes for monitoring and promotion of the wound healing.

Mater Today Bio. 2024-5-18

[8]
Facile Fabrication and Characterization of Amine-Functional Silica Coated Magnetic Iron Oxide Nanoparticles for Aqueous Carbon Dioxide Adsorption.

ACS Omega. 2024-5-2

[9]
Nanoparticles for Antimicrobial Agents Delivery-An Up-to-Date Review.

Int J Mol Sci. 2022-11-10

[10]
Mag-spinner: a next-generation Facile, Affordable, Simple, and porTable (FAST) magnetic separation system.

Nanoscale Adv. 2021-12-23

本文引用的文献

[1]
Silica-coated magnetic iron oxide functionalized with hydrophobic polymeric ionic liquid: a promising nanoscale sorbent for simultaneous extraction of antidiabetic drugs from human plasma prior to their quantitation by HPLC.

RSC Adv. 2018-8-29

[2]
Synthesis and antibacterial properties of a novel magnetic nanocomposite prepared from spent pickling liquors and polyguanidine.

RSC Adv. 2018-5-30

[3]
Preparation of functionalized magnetic nanoparticles conjugated with feroxamine and their evaluation for pathogen detection.

RSC Adv. 2019-5-1

[4]
Selective, Agglomerate-Free Separation of Bacteria Using Biofunctionalized, Magnetic Janus Nanoparticles.

ACS Appl Bio Mater. 2019-8-19

[5]
Enhanced activity of vancomycin by encapsulation in hybrid magnetic nanoparticles conjugated to a cell-penetrating peptide.

Nanoscale. 2020-1-30

[6]
Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer.

Dalton Trans. 2019-7-2

[7]
Vancomycin-Loaded Nanoparticles Enhance Sporicidal and Antibacterial Efficacy for Infection.

Front Microbiol. 2019-5-24

[8]
Glucose-installed biodegradable polymeric micelles for cancer-targeted drug delivery system: synthesis, characterization and in vitro evaluation.

J Mater Sci Mater Med. 2018-11-30

[9]
Surface Modification of Magnetic Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2018-10-9

[10]
Polydopamine-coated magnetic nanochains as efficient dye adsorbent with good recyclability and magnetic separability.

J Colloid Interface Sci. 2018-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索