Suppr超能文献

通过结构和计算方法评估严重急性呼吸综合征冠状病毒2刺突蛋白聚糖的流动性

Assessing the Mobility of Severe Acute Respiratory Syndrome Coronavirus-2 Spike Protein Glycans by Structural and Computational Methods.

作者信息

Stagnoli Soledad, Peccati Francesca, Connell Sean R, Martinez-Castillo Ane, Charro Diego, Millet Oscar, Bruzzone Chiara, Palazon Asis, Ardá Ana, Jiménez-Barbero Jesús, Ereño-Orbea June, Abrescia Nicola G A, Jiménez-Osés Gonzalo

机构信息

Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.

Computational Chemistry Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.

出版信息

Front Microbiol. 2022 Apr 15;13:870938. doi: 10.3389/fmicb.2022.870938. eCollection 2022.

Abstract

Two years after its emergence, the coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains difficult to control despite the availability of several vaccines. The extensively glycosylated SARS-CoV-2 spike (S) protein, which mediates host cell entry by binding to the angiotensin converting enzyme 2 (ACE2) through its receptor binding domain (RBD), is the major target of neutralizing antibodies. Like to many other viral fusion proteins, the SARS-CoV-2 spike protein utilizes a glycan shield to thwart the host immune response. To grasp the influence of chemical signatures on carbohydrate mobility and reconcile the cryo-EM density of specific glycans we combined our cryo-EM map of the S ectodomain to 4.1 Å resolution, reconstructed from a limited number of particles, and all-atom molecular dynamics simulations. Chemical modifications modeled on representative glycans (defucosylation, sialylation and addition of terminal LacNAc units) show no significant influence on either protein shielding or glycan flexibility. By estimating at selected sites the local correlation between the full density map and atomic model-based maps derived from molecular dynamics simulations, we provide insight into the geometries of the α-Man-(1→3)-[α-Man-(1→6)-]-β-Man-(1→4)-β-GlcNAc(1→4)-β-GlcNAc core common to all -glycosylation sites.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发的2019冠状病毒病(COVID-19)疫情出现两年后,尽管已有多种疫苗,但疫情仍难以控制。广泛糖基化的SARS-CoV-2刺突(S)蛋白通过其受体结合域(RBD)与血管紧张素转换酶2(ACE2)结合介导宿主细胞进入,是中和抗体的主要靶点。与许多其他病毒融合蛋白一样,SARS-CoV-2刺突蛋白利用聚糖屏蔽来抵御宿主免疫反应。为了掌握化学特征对碳水化合物流动性的影响,并协调特定聚糖的冷冻电镜密度,我们将S胞外域分辨率为4.1 Å的冷冻电镜图谱(由有限数量的颗粒重建)与全原子分子动力学模拟相结合。基于代表性聚糖的化学修饰(去岩藻糖基化、唾液酸化和添加末端乳糖胺单位)对蛋白质屏蔽或聚糖灵活性均无显著影响。通过在选定位点估计全密度图与基于分子动力学模拟的原子模型图之间的局部相关性,我们深入了解了所有N-糖基化位点共有的α-Man-(1→3)-[α-Man-(1→6)-]-β-Man-(1→4)-β-GlcNAc(1→4)-β-GlcNAc核心的几何结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4246/9053831/6d858650d837/fmicb-13-870938-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验