Boonsiri Warisara, Aung Hein Htet, Aswakool Jirasin, Santironnarong Siraphob, Pothipan Phattarin, Phatthanakun Rungrueang, Chancharoen Wares, Moonwiriyakit Aekkacha
Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand.
Defence Technology Institute, Office of the Permanent Secretary of Defence (Chaengwattana) 7th Floor, 47/433 Moo 3, Ban Mai, Pak Kret, Nonthaburi, 11120, Thailand.
Biomed Microdevices. 2025 Jan 13;27(1):3. doi: 10.1007/s10544-024-00727-w.
Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.7 Pa and two strategically placed bubble traps. Commercially available magnets are used for fabrication, effectively reducing production costs. The trapping efficiency is assessed through video recordings with a phone camera and analysis of captured air volumes by injecting dye at flow rates of 50, 100, and 150 µL/min. This assessment uses LAB* color space with analysis of the perceptual color difference ∆E and computational fluid dynamics (CFD) simulations. The results demonstrate successful application of the bubble trap mechanism for lab-on-chip bubble detection, effectively preventing bubbles from entering microchannels and mitigating potential damage. Furthermore, the correlation between the LAB* color space and volume fraction from CFD simulations allows accurate assessment of trap performance. Therefore, this observation leads to the hypothesis that ∆E could be used to estimate the air volume inside the bubble trap. Future research will validate the bubble trap performance in cell cultures and develop efficient methods for long-term air bubble removal.
微流控芯片常常面临与气泡形成和积聚相关的挑战,这可能会阻碍其性能。本研究调查了一种集成在微流控芯片中的气泡捕获机制,以解决这一问题。微流控芯片设计包括一个流体流动的高剪切应力区域,该区域可产生高达2.7帕斯卡的剪切应力,以及两个经过精心布局的气泡捕获器。使用市售磁铁进行制造,有效降低了生产成本。通过用手机摄像头进行视频记录,并以50、100和150微升/分钟的流速注入染料来分析捕获的空气体积,从而评估捕获效率。该评估使用LAB颜色空间,并分析感知色差∆E以及进行计算流体动力学(CFD)模拟。结果表明,气泡捕获机制在芯片实验室气泡检测中得到了成功应用,有效防止了气泡进入微通道并减轻了潜在损害。此外,LAB颜色空间与CFD模拟中的体积分数之间的相关性使得能够准确评估捕获器的性能。因此,这一观察结果引出了一个假设,即∆E可用于估计气泡捕获器内的空气体积。未来的研究将验证气泡捕获器在细胞培养中的性能,并开发长期去除气泡的有效方法。