Suppr超能文献

纳米结构表面的粘附和杀菌特性取决于细菌的运动性。

Adhesion and bactericidal properties of nanostructured surfaces dependent on bacterial motility.

作者信息

Jindai Keisuke, Nakade Kazuki, Masuda Kyosuke, Sagawa Takashi, Kojima Hiroaki, Shimizu Tomohiro, Shingubara Shoso, Ito Takeshi

机构信息

Graduate School of Science and Engineering, Kansai University Yamatecho 3-3-35, Suita Osaka 564-8060 Japan

National Institute of Information and Communications Technology Iwaoka 588-2, Iwaokacho Kobe Hyogo 651-2492 Japan.

出版信息

RSC Adv. 2020 Feb 4;10(10):5673-5680. doi: 10.1039/c9ra08282d.

Abstract

Different nanostructured surfaces have bactericidal properties that arise from the interaction between the bacteria and the nanostructured surface. In this study, we focused on the relationship between bacterial motility and bactericidal properties. The motility of () was tuned by genetic engineering, and four types of (wild type (WT), lacking flagella, and flagellated with deficient motility or deficient chemotaxis) were used to evaluate the adhesion and bactericidal properties of nanostructured surfaces. Cicada () wings and Si nano-pillar array substrates were used as natural and artificial nanostructured surfaces, respectively. Differences in motility and chemotaxis strongly influenced the adhesion behavior and to some extent, the damage to the cell membrane. These results suggest that the bactericidal properties of nanostructured surfaces depend on bacterial motility.

摘要

不同的纳米结构表面具有杀菌特性,这些特性源于细菌与纳米结构表面之间的相互作用。在本研究中,我们重点关注细菌运动性与杀菌特性之间的关系。通过基因工程调节()的运动性,并使用四种类型的(野生型(WT)、无鞭毛型、运动性缺陷型鞭毛型或趋化性缺陷型鞭毛型)来评估纳米结构表面的粘附和杀菌特性。分别使用蝉()翅膀和硅纳米柱阵列基板作为天然和人工纳米结构表面。运动性和趋化性的差异强烈影响粘附行为,并在一定程度上影响对细胞膜的损伤。这些结果表明,纳米结构表面的杀菌特性取决于细菌的运动性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/319a/9049231/9e74acfbdf50/c9ra08282d-f1.jpg

相似文献

2
Reusable mechano-bactericidal surface with echinoid-shaped hierarchical micro/nano-structure.
Colloids Surf B Biointerfaces. 2024 Feb;234:113729. doi: 10.1016/j.colsurfb.2023.113729. Epub 2023 Dec 25.
3
Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features.
ACS Appl Mater Interfaces. 2016 Jun 22;8(24):14966-74. doi: 10.1021/acsami.5b08309. Epub 2015 Nov 9.
4
Trends in Bactericidal Nanostructured Surfaces: An Analytical Perspective.
ACS Appl Bio Mater. 2021 Oct 18;4(10):7626-7642. doi: 10.1021/acsabm.1c00839. Epub 2021 Oct 4.
5
Evaluation of antibacterial activity on nanoline-array surfaces with different spacing.
Colloids Surf B Biointerfaces. 2025 Jan;245:114242. doi: 10.1016/j.colsurfb.2024.114242. Epub 2024 Sep 14.
6
Natural and bioinspired nanostructured bactericidal surfaces.
Adv Colloid Interface Sci. 2017 Oct;248:85-104. doi: 10.1016/j.cis.2017.07.030. Epub 2017 Jul 27.
7
Preferential adhesion of bacterial cells onto top- and bottom-mounted nanostructured surfaces under flow conditions.
Nanoscale Adv. 2023 Oct 12;5(23):6458-6472. doi: 10.1039/d3na00581j. eCollection 2023 Nov 21.
8
Nanostructured surface topographies have an effect on bactericidal activity.
J Nanobiotechnology. 2018 Feb 28;16(1):20. doi: 10.1186/s12951-018-0347-0.
9
Engineering a nanostructured "super surface" with superhydrophobic and superkilling properties.
RSC Adv. 2015 May 12;5(56):44953-44959. doi: 10.1039/C5RA05206H.
10
Bactericidal performance of nanostructured surfaces by fluorocarbon plasma.
Mater Sci Eng C Mater Biol Appl. 2017 Nov 1;80:117-121. doi: 10.1016/j.msec.2017.05.111. Epub 2017 May 19.

引用本文的文献

1
Comprehensive review of bacterial death mechanism on nanopillared nanostructured surfaces.
Biophys Rev. 2025 May 20;17(3):893-908. doi: 10.1007/s12551-025-01319-5. eCollection 2025 Jun.
2
Nanospiked Cellulose Gauze That Attracts Bacteria with Biomolecules for Reducing Bacterial Load in Burn Wounds.
Nano Lett. 2025 Jan 22;25(3):1177-1184. doi: 10.1021/acs.nanolett.4c05773. Epub 2025 Jan 13.
3
Mechanism of antibacterial property of micro scale rough surface formed by fine-particle bombarding.
Sci Technol Adv Mater. 2024 Jul 8;25(1):2376522. doi: 10.1080/14686996.2024.2376522. eCollection 2024.
5
Bacterial Surface Appendages Modulate the Antimicrobial Activity Induced by Nanoflake Surfaces on Titanium.
Small. 2024 Jun;20(26):e2310149. doi: 10.1002/smll.202310149. Epub 2024 Jan 17.
6
Preferential adhesion of bacterial cells onto top- and bottom-mounted nanostructured surfaces under flow conditions.
Nanoscale Adv. 2023 Oct 12;5(23):6458-6472. doi: 10.1039/d3na00581j. eCollection 2023 Nov 21.
7
Progress in Nanostructured Mechano-Bactericidal Polymeric Surfaces for Biomedical Applications.
Nanomaterials (Basel). 2023 Oct 20;13(20):2799. doi: 10.3390/nano13202799.
8
Designing Effective Antimicrobial Nanostructured Surfaces: Highlighting the Lack of Consensus in the Literature.
ACS Omega. 2023 Apr 20;8(17):14873-14883. doi: 10.1021/acsomega.2c08068. eCollection 2023 May 2.
9
Nature-Inspired Surface Structures Design for Antimicrobial Applications.
Int J Mol Sci. 2023 Jan 10;24(2):1348. doi: 10.3390/ijms24021348.

本文引用的文献

1
Optimization of broth recovery for repair of heat-injured Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7.
J Appl Microbiol. 2019 Jun;126(6):1923-1930. doi: 10.1111/jam.14263. Epub 2019 Apr 15.
2
Antibacterial effects of nano-imprinted moth-eye film in practical settings.
PLoS One. 2018 Oct 3;13(10):e0198300. doi: 10.1371/journal.pone.0198300. eCollection 2018.
3
Tuning antimicrobial properties of biomimetic nanopatterned surfaces.
Nanoscale. 2018 Apr 5;10(14):6639-6650. doi: 10.1039/c8nr00439k.
5
Impact of Bioinspired Nanotopography on the Antibacterial and Antibiofilm Efficacy of Chitosan.
Biomacromolecules. 2018 Apr 9;19(4):1340-1346. doi: 10.1021/acs.biomac.8b00200. Epub 2018 Mar 5.
6
Enhancing the Bactericidal Efficacy of Nanostructured Multifunctional Surface Using an Ultrathin Metal Coating.
Langmuir. 2017 Nov 7;33(44):12569-12579. doi: 10.1021/acs.langmuir.7b02291. Epub 2017 Oct 23.
7
Antibacterial effects of the artificial surface of nanoimprinted moth-eye film.
PLoS One. 2017 Sep 21;12(9):e0185366. doi: 10.1371/journal.pone.0185366. eCollection 2017.
8
Natural and bioinspired nanostructured bactericidal surfaces.
Adv Colloid Interface Sci. 2017 Oct;248:85-104. doi: 10.1016/j.cis.2017.07.030. Epub 2017 Jul 27.
9
Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli.
ACS Appl Mater Interfaces. 2017 Mar 1;9(8):6746-6760. doi: 10.1021/acsami.6b13666. Epub 2017 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验