Suppr超能文献

在电子健康记录数据中自动识别不明原因左心室肥厚患者以改善靶向治疗和家庭筛查

Automatic Identification of Patients With Unexplained Left Ventricular Hypertrophy in Electronic Health Record Data to Improve Targeted Treatment and Family Screening.

作者信息

Sammani Arjan, Jansen Mark, de Vries Nynke M, de Jonge Nicolaas, Baas Annette F, Te Riele Anneline S J M, Asselbergs Folkert W, Oerlemans Marish I F J

机构信息

Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.

Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.

出版信息

Front Cardiovasc Med. 2022 Apr 15;9:768847. doi: 10.3389/fcvm.2022.768847. eCollection 2022.

Abstract

BACKGROUND

Unexplained Left Ventricular Hypertrophy (ULVH) may be caused by genetic and non-genetic etiologies (e.g., sarcomere variants, cardiac amyloid, or Anderson-Fabry's disease). Identification of ULVH patients allows for early targeted treatment and family screening.

AIM

To automatically identify patients with ULVH in electronic health record (EHR) data using two computer methods: text-mining and machine learning (ML).

METHODS

Adults with echocardiographic measurement of interventricular septum thickness (IVSt) were included. A text-mining algorithm was developed to identify patients with ULVH. An ML algorithm including a variety of clinical, ECG and echocardiographic data was trained and tested in an 80/20% split. Clinical diagnosis of ULVH was considered the gold standard. Misclassifications were reviewed by an experienced cardiologist. Sensitivity, specificity, positive, and negative likelihood ratios (LHR+ and LHR-) of both text-mining and ML were reported.

RESULTS

In total, 26,954 subjects (median age 61 years, 55% male) were included. ULVH was diagnosed in 204/26,954 (0.8%) patients, of which 56 had amyloidosis and two Anderson-Fabry Disease. Text-mining flagged 8,192 patients with possible ULVH, of whom 159 were true positives (sensitivity, specificity, LHR+, and LHR- of 0.78, 0.67, 2.36, and 0.33). Machine learning resulted in a sensitivity, specificity, LHR+, and LHR- of 0.32, 0.99, 32, and 0.68, respectively. Pivotal variables included IVSt, systolic blood pressure, and age.

CONCLUSIONS

Automatic identification of patients with ULVH is possible with both Text-mining and ML. Text-mining may be a comprehensive scaffold but can be less specific than machine learning. Deployment of either method depends on existing infrastructures and clinical applications.

摘要

背景

不明原因的左心室肥厚(ULVH)可能由遗传和非遗传病因引起(例如,肌节变异、心脏淀粉样变性或安德森-法布里病)。识别ULVH患者有助于早期进行靶向治疗和家族筛查。

目的

使用两种计算机方法(文本挖掘和机器学习(ML))在电子健康记录(EHR)数据中自动识别ULVH患者。

方法

纳入进行了室间隔厚度(IVSt)超声心动图测量的成年人。开发了一种文本挖掘算法来识别ULVH患者。一种包含各种临床、心电图和超声心动图数据的ML算法在80/20%的划分中进行训练和测试。ULVH的临床诊断被视为金标准。由经验丰富的心脏病专家对错误分类进行审查。报告了文本挖掘和ML的敏感性、特异性、阳性和阴性似然比(LHR+和LHR-)。

结果

总共纳入了26954名受试者(中位年龄61岁,55%为男性)。204/26954(0.8%)例患者被诊断为ULVH,其中56例患有淀粉样变性,2例患有安德森-法布里病。文本挖掘标记了8192例可能患有ULVH的患者,其中159例为真阳性(敏感性、特异性、LHR+和LHR-分别为0.78、0.67、2.36和0.33)。机器学习的敏感性、特异性、LHR+和LHR-分别为0.32、0.99、32和0.68。关键变量包括IVSt、收缩压和年龄。

结论

文本挖掘和ML都可以实现对ULVH患者的自动识别。文本挖掘可能是一个全面的框架,但特异性可能低于机器学习。采用哪种方法取决于现有的基础设施和临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d228/9051030/19f129705eb9/fcvm-09-768847-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验