School of Information and Communication Engineering, Hubei University of Economics, Wuhan, China.
Smart Business Department of China Construction Third Engineering Bureau Installation Engineering Co., Ltd., Wuhan, China.
PLoS One. 2022 May 2;17(5):e0267197. doi: 10.1371/journal.pone.0267197. eCollection 2022.
A twinning bare bones particle swarm optimization(TBBPSO) algorithm is proposed in this paper. The TBBPSO is combined by two operators, the twins grouping operator (TGO) and the merger operator (MO). The TGO aims at the reorganization of the particle swarm. Two particles will form as a twin and influence each other in subsequent iterations. In a twin, one particle is designed to do the global search while the other one is designed to do the local search. The MO aims at merging the twins and enhancing the search ability of the main group. Two operators work together to enhance the local minimum escaping ability of proposed methods. In addition, no parameter adjustment is needed in TBBPSO, which means TBBPSO can solve different types of optimization problems without previous information or parameter adjustment. In the benchmark functions test, the CEC2014 benchmark functions are used. Experimental results prove that proposed methods can present high precision results for various types of optimization problems.
本文提出了一种对偶骨架粒子群优化(TBBPSO)算法。TBBPSO 由两个算子组合而成,即双胞胎分组算子(TGO)和合并算子(MO)。TGO 的目的是对粒子群进行重组。两个粒子将形成一对双胞胎,并在后续迭代中相互影响。在一对双胞胎中,一个粒子被设计用来进行全局搜索,而另一个粒子被设计用来进行局部搜索。MO 的目的是合并双胞胎,增强主群体的搜索能力。两个算子共同作用,增强了所提出方法的局部最小逃逸能力。此外,TBBPSO 不需要进行参数调整,这意味着 TBBPSO 可以解决不同类型的优化问题,而无需先验信息或参数调整。在基准函数测试中,使用了 CEC2014 基准函数。实验结果证明,所提出的方法可以为各种类型的优化问题提供高精度的结果。