Suppr超能文献

一种新型的寄居蟹优化算法。

A novel hermit crab optimization algorithm.

机构信息

School of Information Engineering, Hubei University of Economics, Wuhan, 430205, China.

Hubei Internet Finance Information Engineering Technology Research Center, Wuhan, 430205, China.

出版信息

Sci Rep. 2023 Jun 19;13(1):9934. doi: 10.1038/s41598-023-37129-6.

Abstract

High-dimensional optimization has numerous potential applications in both academia and industry. It is a major challenge for optimization algorithms to generate very accurate solutions in high-dimensional search spaces. However, traditional search tools are prone to dimensional catastrophes and local optima, thus failing to provide high-precision results. To solve these problems, a novel hermit crab optimization algorithm (the HCOA) is introduced in this paper. Inspired by the group behaviour of hermit crabs, the HCOA combines the optimal search and historical path search to balance the depth and breadth searches. In the experimental section of the paper, the HCOA competes with 5 well-known metaheuristic algorithms in the CEC2017 benchmark functions, which contain 29 functions, with 23 of these ranking first. The state of work BPSO-CM is also chosen to compare with the HCOA, and the competition shows that the HCOA has a better performance in the 100-dimensional test of the CEC2017 benchmark functions. All the experimental results demonstrate that the HCOA presents highly accurate and robust results for high-dimensional optimization problems.

摘要

高维优化在学术界和工业界都有许多潜在的应用。对于优化算法来说,在高维搜索空间中生成非常精确的解是一个主要挑战。然而,传统的搜索工具容易出现维度灾难和局部最优,因此无法提供高精度的结果。为了解决这些问题,本文引入了一种新的寄居蟹优化算法(HCOA)。受寄居蟹群体行为的启发,HCOA 将最优搜索和历史路径搜索相结合,以平衡深度搜索和广度搜索。在本文的实验部分,HCOA 在 CEC2017 基准函数的 5 种知名元启发式算法中进行了竞争,其中包含 29 个函数,其中 23 个函数排名第一。还选择了工作状态 BPSO-CM 与 HCOA 进行比较,竞争表明 HCOA 在 CEC2017 基准函数的 100 维测试中具有更好的性能。所有实验结果都表明,HCOA 为高维优化问题提供了高度精确和鲁棒的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6f/10279639/636e356c5102/41598_2023_37129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验