Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
Nat Methods. 2022 May;19(5):576-585. doi: 10.1038/s41592-022-01455-w. Epub 2022 May 2.
High-resolution structural studies are essential for understanding the folding and function of diverse RNAs. Herein, we present a nanoarchitectural engineering strategy for efficient structural determination of RNA-only structures using single-particle cryogenic electron microscopy (cryo-EM). This strategy-ROCK (RNA oligomerization-enabled cryo-EM via installing kissing loops)-involves installing kissing-loop sequences onto the functionally nonessential stems of RNAs for homomeric self-assembly into closed rings with multiplied molecular weights and mitigated structural flexibility. ROCK enables cryo-EM reconstruction of the Tetrahymena group I intron at 2.98-Å resolution overall (2.85 Å for the core), allowing de novo model building of the complete RNA, including the previously unknown peripheral domains. ROCK is further applied to two smaller RNAs-the Azoarcus group I intron and the FMN riboswitch, revealing the conformational change of the former and the bound ligand in the latter. ROCK holds promise to greatly facilitate the use of cryo-EM in RNA structural studies.
高分辨率结构研究对于理解不同 RNA 的折叠和功能至关重要。在此,我们提出了一种纳米结构工程策略,用于使用单颗粒低温电子显微镜(cryo-EM)高效确定仅 RNA 结构的结构。该策略-ROCK(通过安装 kissing 环实现 RNA 寡聚化的 cryo-EM)-涉及在 RNA 的非必需功能茎上安装 kissing 环序列,以使同型自组装成分子量倍增且结构灵活性降低的闭环。ROCK 能够以 2.98-Å 的整体分辨率(核心为 2.85-Å)重建 Tetrahymena 组 I 内含子的 cryo-EM,从而能够从头构建完整的 RNA 模型,包括以前未知的外围结构域。ROCK 进一步应用于两个较小的 RNA- Azoarcus 组 I 内含子和 FMN 核糖开关,揭示了前者的构象变化和后者结合配体的情况。ROCK 有望极大地促进 cryo-EM 在 RNA 结构研究中的应用。