Suppr超能文献

开发和验证一种可解释的临床评分,用于在急诊科早期识别急性肾损伤。

Development and validation of an interpretable clinical score for early identification of acute kidney injury at the emergency department.

机构信息

Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.

Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore.

出版信息

Sci Rep. 2022 May 2;12(1):7111. doi: 10.1038/s41598-022-11129-4.

Abstract

Acute kidney injury (AKI) in hospitalised patients is a common syndrome associated with poorer patient outcomes. Clinical risk scores can be used for the early identification of patients at risk of AKI. We conducted a retrospective study using electronic health records of Singapore General Hospital emergency department patients who were admitted from 2008 to 2016. The primary outcome was inpatient AKI of any stage within 7 days of admission based on the Kidney Disease Improving Global Outcome (KDIGO) 2012 guidelines. A machine learning-based framework AutoScore was used to generate clinical scores from the study sample which was randomly divided into training, validation and testing cohorts. Model performance was evaluated using area under the curve (AUC). Among the 119,468 admissions, 10,693 (9.0%) developed AKI. 8491 were stage 1 (79.4%), 906 stage 2 (8.5%) and 1296 stage 3 (12.1%). The AKI Risk Score (AKI-RiSc) was a summation of the integer scores of 6 variables: serum creatinine, serum bicarbonate, pulse, systolic blood pressure, diastolic blood pressure, and age. AUC of AKI-RiSc was 0.730 (95% CI 0.714-0.747), outperforming an existing AKI Prediction Score model which achieved AUC of 0.665 (95% CI 0.646-0.679) on the testing cohort. At a cut-off of 4 points, AKI-RiSc had a sensitivity of 82.6% and specificity of 46.7%. AKI-RiSc is a simple clinical score that can be easily implemented on the ground for early identification of AKI and potentially be applied in international settings.

摘要

医院住院患者的急性肾损伤 (AKI) 是一种常见的综合征,与患者预后较差有关。临床风险评分可用于早期识别 AKI 风险患者。我们使用 2008 年至 2016 年新加坡综合医院急诊科住院患者的电子健康记录进行了一项回顾性研究。主要结局是根据肾脏病改善全球结局 (KDIGO) 2012 指南,入院后 7 天内任何阶段的住院 AKI。使用基于机器学习的 AutoScore 框架从研究样本中生成临床评分,该样本被随机分为训练、验证和测试队列。使用曲线下面积 (AUC) 评估模型性能。在 119468 次入院中,有 10693 例(9.0%)发生 AKI。1 期 8491 例(79.4%),2 期 906 例(8.5%),3 期 1296 例(12.1%)。AKI 风险评分 (AKI-RiSc) 是 6 个变量的整数评分总和:血清肌酐、血清碳酸氢盐、脉搏、收缩压、舒张压和年龄。AKI-RiSc 的 AUC 为 0.730(95%CI 0.714-0.747),优于现有 AKI 预测评分模型,该模型在测试队列中的 AUC 为 0.665(95%CI 0.646-0.679)。在 4 分的截定点,AKI-RiSc 的敏感性为 82.6%,特异性为 46.7%。AKI-RiSc 是一种简单的临床评分,可以在现场轻松实施,以早期识别 AKI,并可能在国际范围内应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ca/9061747/bf9e08a20b6b/41598_2022_11129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验