Suppr超能文献

人工智能在急性肾损伤风险预测中的应用

Artificial Intelligence in Acute Kidney Injury Risk Prediction.

作者信息

Gameiro Joana, Branco Tiago, Lopes José António

机构信息

Division of Nephrology and Renal Transplantation, Department of Medicine, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal.

Department of Medicine, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal.

出版信息

J Clin Med. 2020 Mar 3;9(3):678. doi: 10.3390/jcm9030678.

Abstract

Acute kidney injury (AKI) is a frequent complication in hospitalized patients, which is associated with worse short and long-term outcomes. It is crucial to develop methods to identify patients at risk for AKI and to diagnose subclinical AKI in order to improve patient outcomes. The advances in clinical informatics and the increasing availability of electronic medical records have allowed for the development of artificial intelligence predictive models of risk estimation in AKI. In this review, we discussed the progress of AKI risk prediction from risk scores to electronic alerts to machine learning methods.

摘要

急性肾损伤(AKI)是住院患者常见的并发症,与短期和长期预后较差相关。开发识别AKI风险患者和诊断亚临床AKI的方法对于改善患者预后至关重要。临床信息学的进展以及电子病历可用性的提高使得AKI风险评估的人工智能预测模型得以发展。在本综述中,我们讨论了从风险评分到电子警报再到机器学习方法的AKI风险预测进展。

相似文献

4
7
Artificial Intelligence in Acute Kidney Injury Prediction.人工智能在急性肾损伤预测中的应用。
Adv Chronic Kidney Dis. 2022 Sep;29(5):450-460. doi: 10.1053/j.ackd.2022.07.009.

引用本文的文献

3
The effect of perioperative AKI on surgical outcomes.围手术期急性肾损伤对外科手术结局的影响。
Anesthesiol Perioper Sci. 2023 Dec;1(4). doi: 10.1007/s44254-023-00032-4. Epub 2023 Sep 18.
5
Ten misconceptions regarding decision-making in critical care.关于重症监护决策的十个误解。
World J Crit Care Med. 2024 Jun 9;13(2):89644. doi: 10.5492/wjccm.v13.i2.89644.
7
[Artificial intelligence and acute kidney injury].[人工智能与急性肾损伤]
Med Klin Intensivmed Notfmed. 2024 Apr;119(3):199-207. doi: 10.1007/s00063-024-01111-5. Epub 2024 Feb 23.
9
Clinical Characteristics and Outcomes of Drug-Induced Acute Kidney Injury Cases.药物性急性肾损伤病例的临床特征与转归
Kidney Int Rep. 2023 Aug 14;8(11):2333-2344. doi: 10.1016/j.ekir.2023.07.037. eCollection 2023 Nov.

本文引用的文献

3
Machine Learning to Predict Acute Kidney Injury.用于预测急性肾损伤的机器学习
Am J Kidney Dis. 2020 Jun;75(6):965-967. doi: 10.1053/j.ajkd.2019.08.010. Epub 2019 Oct 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验