Suppr超能文献

利用稳定同位素探测技术在嗜热环境中发现木质素转化细菌和酶。

Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing.

机构信息

Department of Microbiology and Immunology, Life Sciences Institute, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada.

Advanced Renewable Materials Lab, Department of Wood Science, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada.

出版信息

ISME J. 2022 Aug;16(8):1944-1956. doi: 10.1038/s41396-022-01241-8. Epub 2022 May 2.

Abstract

Characterizing microorganisms and enzymes involved in lignin biodegradation in thermal ecosystems can identify thermostable biocatalysts. We integrated stable isotope probing (SIP), genome-resolved metagenomics, and enzyme characterization to investigate the degradation of high-molecular weight, C-ring-labeled synthetic lignin by microbial communities from moderately thermophilic hot spring sediment (52 °C) and a woody "hog fuel" pile (53 and 62 °C zones). C-Lignin degradation was monitored using IR-GCMS of CO, and isotopic enrichment of DNA was measured with UHLPC-MS/MS. Assembly of 42 metagenomic libraries (72 Gb) yielded 344 contig bins, from which 125 draft genomes were produced. Fourteen genomes were significantly enriched with C from lignin, including genomes of Actinomycetes (Thermoleophilaceae, Solirubrobacteraceae, Rubrobacter sp.), Firmicutes (Kyrpidia sp., Alicyclobacillus sp.) and Gammaproteobacteria (Steroidobacteraceae). We employed multiple approaches to screen genomes for genes encoding putative ligninases and pathways for aromatic compound degradation. Our analysis identified several novel laccase-like multi-copper oxidase (LMCO) genes in C-enriched genomes. One of these LMCOs was heterologously expressed and shown to oxidize lignin model compounds and minimally transformed lignin. This study elucidated bacterial lignin depolymerization and mineralization in thermal ecosystems, establishing new possibilities for the efficient valorization of lignin at elevated temperature.

摘要

鉴定参与木质素生物降解的微生物和酶在热生态系统中可以鉴定出热稳定的生物催化剂。我们整合了稳定同位素探测(SIP)、基因组解析宏基因组学和酶特性分析,研究了来自中温温泉沉积物(52°C)和木质“hog fuel”堆(53 和 62°C 区)的微生物群落对高分子量、C 环标记的合成木质素的降解。使用 CO 的红外-GCMS 监测 C-木质素的降解,并使用 UHLPC-MS/MS 测量 DNA 的同位素富集。组装了 42 个宏基因组文库(72 Gb),产生了 344 个连续序列,从中产生了 125 个草图基因组。有 14 个基因组明显富含木质素中的 C,包括放线菌(Thermoleophilaceae、Solirubrobacteraceae、Rubrobacter sp.)、厚壁菌(Kyrpidia sp.、 Alicyclobacillus sp.)和γ变形菌(Steroidobacteraceae)的基因组。我们采用多种方法从基因组中筛选编码木质素酶和芳族化合物降解途径的基因。我们的分析在 C 富集的基因组中鉴定了几种新型漆酶样多铜氧化酶(LMCO)基因。其中一种 LMCO 被异源表达并显示出可氧化木质素模型化合物和最小转化的木质素。本研究阐明了热生态系统中细菌木质素的解聚和矿化,为在高温下有效利用木质素开辟了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b8/9296663/8b068a17b29b/41396_2022_1241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验