Suppr超能文献

用于韩国老年人四肢瘦体重的 2MHz 阻抗指数预测方程。

Two-megahertz impedance index prediction equation for appendicular lean mass in Korean older people.

机构信息

Department of Physical Education, Korean National University of Education, Cheongju, Republic of Korea.

Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, Republic of Korea.

出版信息

BMC Geriatr. 2022 May 2;22(1):385. doi: 10.1186/s12877-022-02997-6.

Abstract

BACKGROUND

Whole-body bioelectrical impedance analysis (BIA) has been accepted as an indirect method to estimate appendicular lean mass (ALM) comparable to dual-energy X-ray absorptiometry (DXA). However, single or limited frequencies currently used for these estimates may over or under-estimate ALM. Accordingly, there is a need to measure the impedance parameter with appendicular lean-specific across multiple frequencies to more accurately estimate ALM. We aimed to validate muscle-specific frequency BIA equation for ALM using multifrequency BIA (MF-BIA) with DXA as the reference.

METHODS

195 community-dwelling Korean older people (94 men and 101 women) aged 70 ~ 92y participated in this study. ALM was measured by DXA and bioimpedance measures at frequencies of 5 kHz ~ 3 MHz were assessed for independent predictive variables. Regression analyses were used to find limb-specific frequencies of bioimpedance, to develop the ALM equations and to conduct the internal cross-validation. The six published equations and the final equation of MF-BIA were externally cross-validated.

RESULTS

195 participants completed the measurements of MF-BIA and DXA. Using bivariate regression analysis, the 2 MHz impedance index explained R = 91.5% of variability (P < 0.001) in ALM and predictive accuracy of standard error of estimate (SEE) was 1.0822 kg ALM (P < 0.001). Multiple stepwise regression analysis obtained in the development group had an adjusted R of 9.28% (P < 0.001) and a SEE of 0.97 kg ALM. The cross-validation group had no significant difference between the measured ALM and the predicted ALM (17.8 ± 3.9 kg vs. 17.7 ± 3.8 kg, P = .486) with 93.1% of R (P < 0.001) and 1.00 kg ALM of total error. The final regression equation was as follows: ALM = 0.247ZI + 1.254SEX + 0.067Xc + 1.739 with 93% of R (P < 0.001), 0.97 kg ALM of SEE (Subjective Rating as "excellent" for men and "very good" for women). In the analysis of the diagnostic level for sarcopenia of the final regression, the overall agreement was 94.9% (k = 0.779, P < 0.001) with 71.4% of sensitivity, 98.8% of specificity, 91.3 of positive prediction value and 95.3% of negative prediction value.

CONCLUSION

The newly developed appendicular lean-specific high-frequency BIA prediction equation has a high predictive accuracy, sensitivity, specificity, and agreement for both individual and group measurements. Thus, the high-frequency BIA prediction equation is suitable not only for epidemiological studies, but also for the diagnosis of sarcopenia in clinical settings.

摘要

背景

全身生物电阻抗分析(BIA)已被接受为一种与双能 X 射线吸收法(DXA)相当的间接方法来估计四肢瘦体重(ALM)。然而,目前用于这些估计的单一或有限频率可能会过高或过低估计 ALM。因此,需要使用特定于四肢的多个频率来测量阻抗参数,以更准确地估计 ALM。我们旨在使用多频 BIA(MF-BIA)验证针对 ALM 的肌肉特异性频率 BIA 方程,并将 DXA 作为参考。

方法

195 名居住在社区的韩国老年人(94 名男性和 101 名女性),年龄 7092 岁,参加了这项研究。使用 DXA 测量 ALM,并评估 5 kHz3 MHz 频率的生物阻抗测量值作为独立预测变量。使用回归分析找到生物阻抗的肢特异性频率,制定 ALM 方程,并进行内部交叉验证。对六个已发表的方程和 MF-BIA 的最终方程进行外部交叉验证。

结果

195 名参与者完成了 MF-BIA 和 DXA 的测量。使用双变量回归分析,2 MHz 阻抗指数解释了 ALM 变异性的 91.5%(P<0.001),预测标准误差(SEE)的准确性为 1.0822 kg ALM(P<0.001)。在开发组中进行的多元逐步回归分析得出的调整后的 R 为 9.28%(P<0.001),SEE 为 0.97 kg ALM。验证组中,测量的 ALM 与预测的 ALM 之间无显著差异(17.8±3.9 kg 与 17.7±3.8 kg,P=0.486),R 为 93.1%(P<0.001),总误差为 1.00 kg ALM。最终回归方程如下:ALM=0.247ZI+1.254SEX+0.067Xc+1.739,其中 R 为 93%(P<0.001),SEE 为 0.97 kg ALM(男性为“优秀”,女性为“很好”)。在最终回归的肌肉减少症诊断水平分析中,总体一致性为 94.9%(k=0.779,P<0.001),灵敏度为 71.4%,特异性为 98.8%,阳性预测值为 91.3%,阴性预测值为 95.3%。

结论

新开发的特定于四肢的高频 BIA 预测方程具有较高的预测准确性、灵敏度、特异性和一致性,无论是个体测量还是群体测量都适用。因此,高频 BIA 预测方程不仅适用于流行病学研究,也适用于临床环境中肌肉减少症的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ea/9059377/452f5dc719b6/12877_2022_2997_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验