Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA.
Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA.
J Neuroinflammation. 2022 Apr 30;19(1):105. doi: 10.1186/s12974-022-02462-6.
The important contribution of glia to mechanisms of injury and repair of the nervous system is increasingly recognized. In stark contrast to the central nervous system (CNS), the peripheral nervous system (PNS) has a remarkable capacity for regeneration after injury. Schwann cells are recognized as key contributors to PNS regeneration, but the molecular underpinnings of the Schwann cell response to injury and how they interact with the inflammatory response remain incompletely understood.
We completed bulk RNA-sequencing of Schwann cells purified acutely using immunopanning from the naïve and injured rodent sciatic nerve at 3, 5, and 7 days post-injury. We used qRT-PCR and in situ hybridization to assess cell purity and probe dataset integrity. Finally, we used bioinformatic analysis to probe Schwann cell-specific injury-induced modulation of cellular pathways.
Our data confirm Schwann cell purity and validate RNAseq dataset integrity. Bioinformatic analysis identifies discrete modules of genes that follow distinct patterns of regulation in the 1st days after injury and their corresponding molecular pathways. These findings enable improved differentiation of myeloid and glial components of neuroinflammation after peripheral nerve injury and highlight novel molecular aspects of the Schwann cell injury response such as acute downregulation of the AGE/RAGE pathway and of secreted molecules Sparcl1 and Sema5a.
We provide a helpful resource for further deciphering the Schwann cell injury response and a depth of transcriptional data that can complement the findings of recent single cell sequencing approaches. As more data become available on the response of CNS glia to injury, we anticipate that this dataset will provide a valuable platform for understanding key differences in the PNS and CNS glial responses to injury and for designing approaches to ameliorate CNS regeneration.
神经胶质细胞在神经系统损伤和修复机制中的重要作用正日益受到重视。与中枢神经系统(CNS)形成鲜明对比的是,周围神经系统(PNS)在受伤后具有显著的再生能力。雪旺细胞被认为是 PNS 再生的关键贡献者,但雪旺细胞对损伤的反应的分子基础以及它们与炎症反应的相互作用仍不完全清楚。
我们使用免疫磁珠法从正常和损伤后的幼年鼠坐骨神经中急性分离雪旺细胞,分别在损伤后 3、5 和 7 天完成了雪旺细胞的 bulk RNA-seq 测序。我们使用 qRT-PCR 和原位杂交来评估细胞纯度和数据集完整性。最后,我们使用生物信息学分析来探测雪旺细胞特异性损伤诱导的细胞通路的调节。
我们的数据证实了雪旺细胞的纯度,并验证了 RNAseq 数据集的完整性。生物信息学分析确定了在损伤后 1 天内具有不同调节模式的离散基因模块及其相应的分子途径。这些发现有助于在周围神经损伤后更好地区分髓鞘和神经胶质成分的神经炎症,突出了雪旺细胞损伤反应的新的分子方面,如 AGE/RAGE 通路和分泌分子 Sparcl1 和 Sema5a 的急性下调。
我们为进一步阐明雪旺细胞损伤反应提供了一个有用的资源,并提供了一个深度转录组数据集,可补充最近的单细胞测序方法的发现。随着更多关于 CNS 胶质细胞对损伤反应的信息的出现,我们预计该数据集将为理解 PNS 和 CNS 胶质细胞对损伤的反应的关键差异提供有价值的平台,并为设计改善 CNS 再生的方法提供帮助。