Suppr超能文献

非专业人士对医疗决策辅助工具信任度的决定因素:随机对照试验

Determinants of Laypersons' Trust in Medical Decision Aids: Randomized Controlled Trial.

作者信息

Kopka Marvin, Schmieding Malte L, Rieger Tobias, Roesler Eileen, Balzer Felix, Feufel Markus A

机构信息

Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

Cognitive Psychology and Ergonomics, Department of Psychology and Ergonomics (IPA), Technische Universität Berlin, Berlin, Germany.

出版信息

JMIR Hum Factors. 2022 May 3;9(2):e35219. doi: 10.2196/35219.

Abstract

BACKGROUND

Symptom checker apps are patient-facing decision support systems aimed at providing advice to laypersons on whether, where, and how to seek health care (disposition advice). Such advice can improve laypersons' self-assessment and ultimately improve medical outcomes. Past research has mainly focused on the accuracy of symptom checker apps' suggestions. To support decision-making, such apps need to provide not only accurate but also trustworthy advice. To date, only few studies have addressed the question of the extent to which laypersons trust symptom checker app advice or the factors that moderate their trust. Studies on general decision support systems have shown that framing automated systems (anthropomorphic or emphasizing expertise), for example, by using icons symbolizing artificial intelligence (AI), affects users' trust.

OBJECTIVE

This study aims to identify the factors influencing laypersons' trust in the advice provided by symptom checker apps. Primarily, we investigated whether designs using anthropomorphic framing or framing the app as an AI increases users' trust compared with no such framing.

METHODS

Through a web-based survey, we recruited 494 US residents with no professional medical training. The participants had to first appraise the urgency of a fictitious patient description (case vignette). Subsequently, a decision aid (mock symptom checker app) provided disposition advice contradicting the participants' appraisal, and they had to subsequently reappraise the vignette. Participants were randomized into 3 groups: 2 experimental groups using visual framing (anthropomorphic, 160/494, 32.4%, vs AI, 161/494, 32.6%) and a neutral group without such framing (173/494, 35%).

RESULTS

Most participants (384/494, 77.7%) followed the decision aid's advice, regardless of its urgency level. Neither anthropomorphic framing (odds ratio 1.120, 95% CI 0.664-1.897) nor framing as AI (odds ratio 0.942, 95% CI 0.565-1.570) increased behavioral or subjective trust (P=.99) compared with the no-frame condition. Even participants who were extremely certain in their own decisions (ie, 100% certain) commonly changed it in favor of the symptom checker's advice (19/34, 56%). Propensity to trust and eHealth literacy were associated with increased subjective trust in the symptom checker (propensity to trust b=0.25; eHealth literacy b=0.2), whereas sociodemographic variables showed no such link with either subjective or behavioral trust.

CONCLUSIONS

Contrary to our expectation, neither the anthropomorphic framing nor the emphasis on AI increased trust in symptom checker advice compared with that of a neutral control condition. However, independent of the interface, most participants trusted the mock app's advice, even when they were very certain of their own assessment. Thus, the question arises as to whether laypersons use such symptom checkers as substitutes rather than as aids in their own decision-making. With trust in symptom checkers already high at baseline, the benefit of symptom checkers depends on interface designs that enable users to adequately calibrate their trust levels during usage.

TRIAL REGISTRATION

Deutsches Register Klinischer Studien DRKS00028561; https://tinyurl.com/rv4utcfb (retrospectively registered).

摘要

背景

症状检查应用程序是面向患者的决策支持系统,旨在就是否就医、前往何处就医以及如何就医(处置建议)向非专业人士提供建议。此类建议可改善非专业人士的自我评估,并最终改善医疗结果。过去的研究主要集中在症状检查应用程序建议的准确性上。为支持决策,此类应用程序不仅需要提供准确的建议,还需要提供值得信赖的建议。迄今为止,只有少数研究探讨了非专业人士对症状检查应用程序建议的信任程度,或影响他们信任的因素。关于一般决策支持系统的研究表明,例如通过使用象征人工智能(AI)的图标来构建自动化系统(拟人化或强调专业知识)会影响用户的信任。

目的

本研究旨在确定影响非专业人士对症状检查应用程序所提供建议信任度的因素。主要地,我们调查了与未采用此类框架相比,使用拟人化框架或将应用程序构建为AI的设计是否会增加用户的信任。

方法

通过一项基于网络的调查,我们招募了494名没有接受过专业医学培训的美国居民。参与者首先必须评估一个虚拟患者描述(病例 vignette)的紧急程度。随后,一个决策辅助工具(模拟症状检查应用程序)提供了与参与者评估相矛盾的处置建议,然后他们必须重新评估该 vignette。参与者被随机分为3组:2个实验组使用视觉框架(拟人化,160/494,32.4%,对比AI,161/494,32.6%)和一个没有此类框架的中性组(173/494,35%)。

结果

大多数参与者(384/494,77.7%)遵循了决策辅助工具的建议,无论其紧急程度如何。与无框架条件相比,拟人化框架(优势比1.120,95%置信区间0.664 - 1.897)和构建为AI(优势比0.942,95%置信区间0.565 - 1.570)均未增加行为或主观信任(P = 0.99)。即使是那些对自己的决定非常确定(即100%确定)的参与者,也通常会改变决定以支持症状检查器的建议(19/34,56%)。信任倾向和电子健康素养与对症状检查器的主观信任增加相关(信任倾向b = 0.25;电子健康素养b = 0.2),而社会人口统计学变量与主观或行为信任均无此类关联。

结论

与我们的预期相反,与中性对照条件相比,拟人化框架和对AI的强调均未增加对症状检查器建议的信任。然而,无论界面如何,大多数参与者都信任模拟应用程序的建议,即使他们对自己的评估非常确定。因此,问题在于非专业人士是否将此类症状检查器用作自己决策的替代品而非辅助工具。由于在基线时对症状检查器的信任已经很高,症状检查器的益处取决于能够让用户在使用过程中充分校准其信任水平的界面设计。

试验注册

德国临床研究注册中心DRKS00028561;https://tinyurl.com/rv4utcfb(追溯注册)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67e9/9115664/2ddfb63a4401/humanfactors_v9i2e35219_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验