Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.
Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2203967119. doi: 10.1073/pnas.2203967119. Epub 2022 May 3.
Certain DNA sequences, including mirror-symmetric polypyrimidine•polypurine runs, are capable of folding into a triple-helix–containing non–B-form DNA structure called H-DNA. Such H-DNA–forming sequences occur frequently in many eukaryotic genomes, including in mammals, and multiple lines of evidence indicate that these motifs are mutagenic and can impinge on DNA replication, transcription, and other aspects of genome function. In this study, we show that the triplex-forming potential of H-DNA motifs in the mouse genome can be evaluated using S1-sequencing (S1-seq), which uses the single-stranded DNA (ssDNA)–specific nuclease S1 to generate deep-sequencing libraries that report on the position of ssDNA throughout the genome. When S1-seq was applied to genomic DNA isolated from mouse testis cells and splenic B cells, we observed prominent clusters of S1-seq reads that appeared to be independent of endogenous double-strand breaks, that coincided with H-DNA motifs, and that correlated strongly with the triplex-forming potential of the motifs. Fine-scale patterns of S1-seq reads, including a pronounced strand asymmetry in favor of centrally positioned reads on the pyrimidine-containing strand, suggested that this S1-seq signal is specific for one of the four possible isomers of H-DNA (H-y5). By leveraging the abundance and complexity of naturally occurring H-DNA motifs across the mouse genome, we further defined how polypyrimidine repeat length and the presence of repeat-interrupting substitutions modify the structure of H-DNA. This study provides an approach for studying DNA secondary structure genome-wide at high spatial resolution.
某些 DNA 序列,包括镜像对称的多嘧啶•多嘌呤序列,能够折叠成一种含有三链的非 B 型 DNA 结构,称为 H-DNA。这种形成 H-DNA 的序列在许多真核生物基因组中频繁出现,包括在哺乳动物中,有多种证据表明这些基序具有诱变作用,可以影响 DNA 复制、转录和基因组功能的其他方面。在这项研究中,我们表明可以使用 S1 测序(S1-seq)来评估小鼠基因组中 H-DNA 基序的三链形成潜力,S1-seq 使用单链 DNA(ssDNA)特异性核酸酶 S1 来生成深度测序文库,报告 ssDNA 在整个基因组中的位置。当 S1-seq 应用于从小鼠睾丸细胞和脾 B 细胞中分离的基因组 DNA 时,我们观察到明显的 S1-seq 读数簇,这些读数簇似乎独立于内源性双链断裂,与 H-DNA 基序一致,并且与基序的三链形成潜力密切相关。S1-seq 读数的精细模式,包括在嘧啶含量较高的链上中央位置的读数明显的链不对称性,表明这种 S1-seq 信号是 H-DNA 的四种可能异构体之一(H-y5)的特异性。通过利用小鼠基因组中自然存在的 H-DNA 基序的丰富性和复杂性,我们进一步定义了多嘧啶重复长度和重复中断取代如何修饰 H-DNA 的结构。这项研究提供了一种在高空间分辨率下研究全基因组 DNA 二级结构的方法。