Suppr超能文献

2 型混合有效性-实施研究方案:在多站点癌症中心扩展、实施和评估电子病历集成的患者报告症状监测。

Protocol for a type 2 hybrid effectiveness-implementation study expanding, implementing and evaluating electronic health record-integrated patient-reported symptom monitoring in a multisite cancer centre.

机构信息

Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA

Department of Population Health Sciences, The University of Utah School of Medicine, Salt Lake City, Utah, USA.

出版信息

BMJ Open. 2022 May 3;12(5):e059563. doi: 10.1136/bmjopen-2021-059563.

Abstract

INTRODUCTION

Cancer symptom monitoring and management interventions can address concerns that may otherwise go undertreated. However, such programmes and their evaluations remain largely limited to trials versus healthcare systemwide applications. We previously developed and piloted an electronic patient-reported symptom and need assessment ('cPRO' for cancer patient-reported outcomes) within the electronic health record (EHR). This study will expand cPRO implementation to medical oncology clinics across a large healthcare system. We will conduct a formal evaluation via a stepped wedge trial with a type 2 hybrid effectiveness-implementation design.

METHODS AND ANALYSIS

Aim 1 comprises a mixed method evaluation of cPRO implementation. Adult outpatients will complete cPRO assessments (pain, fatigue, physical function, depression, anxiety and supportive care needs) before medical oncology visits. Results are available in the EHR; severe symptoms and endorsed needs trigger clinician notifications. We will track implementation strategies using the Longitudinal Implementation Strategy Tracking System. Aim 2 will evaluate cPRO's impact on patient and system outcomes over 12 months via (a) a quality improvement study (n=4000 cases) and (b) a human subjects substudy (n=1000 patients). Aim 2a will evaluate EHR-documented healthcare usage and patient satisfaction. In aim 2b, participating patients will complete patient-reported healthcare utilisation and quality, symptoms and health-related quality of life measures at baseline, 6 and 12 months. We will analyse data using generalised linear mixed models and estimate individual trajectories of patient-reported symptom scores at baseline, 6 and 12 months. Using growth mixture modelling, we will characterise the overall trajectories of each symptom. Aim 3 will identify cPRO implementation facilitators and barriers via mixed methods research gathering feedback from stakeholders. Patients (n=50) will participate in focus groups or interviews. Clinicians and administrators (n=40) will complete surveys to evaluate implementation. We will graphically depict longitudinal implementation survey results and code qualitative data using directed content analysis.

ETHICS AND DISSEMINATION

This study was approved by the Northwestern University Institutional Review Board (STU00207807). Findings will be disseminated via local and conference presentations and peer-reviewed journals.

TRIAL REGISTRATION NUMBER

NCT04014751; ClinicalTrials.gov.

摘要

简介

癌症症状监测和管理干预措施可以解决可能未得到充分治疗的问题。然而,此类方案及其评估仍然主要局限于试验与整个医疗系统的应用。我们之前在电子病历(EHR)中开发并试点了一种电子患者报告症状和需求评估(“cPRO”用于癌症患者报告结局)。本研究将在一个大型医疗系统的肿瘤内科诊所中扩大 cPRO 的实施。我们将通过具有 2 型混合有效性实施设计的阶梯式楔形试验进行正式评估。

方法与分析

目的 1 包括对 cPRO 实施的混合方法评估。成年门诊患者将在肿瘤内科就诊前完成 cPRO 评估(疼痛、疲劳、身体功能、抑郁、焦虑和支持性护理需求)。结果可在 EHR 中获得;严重症状和被认可的需求会触发临床医生通知。我们将使用纵向实施策略跟踪系统跟踪实施策略。目的 2 将通过(a)一项质量改进研究(n=4000 例)和(b)一项人体研究子研究(n=1000 例患者),在 12 个月内评估 cPRO 对患者和系统结局的影响。目的 2a 将评估 EHR 记录的医疗保健使用情况和患者满意度。在目的 2b 中,参与的患者将在基线、6 个月和 12 个月时完成患者报告的医疗保健使用情况和质量、症状和健康相关生活质量测量。我们将使用广义线性混合模型分析数据,并估计患者报告症状得分在基线、6 个月和 12 个月时的个体轨迹。使用增长混合模型,我们将描述每个症状的总体轨迹。目的 3 将通过收集利益相关者反馈的混合方法研究,确定 cPRO 实施的促进因素和障碍。患者(n=50)将参加焦点小组或访谈。临床医生和管理人员(n=40)将完成调查以评估实施情况。我们将以图形方式展示纵向实施调查结果,并使用定向内容分析对定性数据进行编码。

伦理与传播

本研究已获得西北大学机构审查委员会的批准(STU00207807)。研究结果将通过当地和会议演讲以及同行评议期刊进行传播。

注册号

NCT04014751;ClinicalTrials.gov。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeeb/9066503/3313f465c311/bmjopen-2021-059563f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验