Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.
Tob Control. 2023 Nov;32(6):739-746. doi: 10.1136/tobaccocontrol-2021-057243. Epub 2022 May 3.
YouTube is a popular social media used by youth and has electronic cigarette (e-cigarette) content. We used machine learning to identify the content of e-cigarette videos, featured e-cigarette products, video uploaders, and marketing and sales of e-cigarette products.
We identified e-cigarette content using 18 search terms (eg, e-cig) using fictitious youth viewer profiles and predicted four models using the metadata as the input to supervised machine learning: (1) video themes, (2) featured e-cigarette products, (3) channel type (ie, video uploaders) and (4) discount/sales. We assessed the association between engagement data and the four models.
3830 English videos were included in the supervised machine learning. The most common video theme was 'product review' (48.9%), followed by 'instruction' (eg, 'how to' use/modify e-cigarettes; 17.3%); diverse e-cigarette products were featured; 'vape enthusiasts' most frequently posted e-cigarette videos (54.0%), followed by retailers (20.3%); 43.2% of videos had discount/sales of e-cigarettes; and the most common sales strategy was external links for purchasing (34.1%). 'Vape trick' was the least common theme but had the highest engagement (eg, >2 million views). 'Cannabis' (53.9%) and 'instruction' (49.9%) themes were more likely to have external links for purchasing (p<0.001). The four models achieved an F1 score (a measure of model accuracy) of up to 0.87.
Our findings indicate that on YouTube videos accessible to youth, a variety of e-cigarette products are featured through diverse videos themes, with discount/sales. The findings highlight the need to regulate the promotion of e-cigarettes on social media platforms.
YouTube 是一个深受年轻人喜爱的社交媒体平台,其中包含电子烟(e-cigarette)内容。我们使用机器学习来识别电子烟视频的内容、特色电子烟产品、视频上传者,以及电子烟产品的营销和销售情况。
我们使用 18 个搜索词(例如 e-cig)通过虚构的青年观众档案来识别电子烟内容,并使用监督机器学习作为输入来预测四个模型:(1)视频主题,(2)特色电子烟产品,(3)频道类型(即视频上传者)和(4)折扣/销售。我们评估了参与度数据与这四个模型之间的关联。
在监督机器学习中纳入了 3830 个英文视频。最常见的视频主题是“产品评价”(48.9%),其次是“说明”(例如,“如何”使用/修改电子烟;17.3%);展示了各种电子烟产品;电子烟爱好者最常发布电子烟视频(54.0%),其次是零售商(20.3%);43.2%的视频有电子烟的折扣/销售;最常见的销售策略是外部链接购买(34.1%)。“电子烟技巧”是最不常见的主题,但参与度最高(例如,超过 200 万次观看)。“大麻”(53.9%)和“说明”(49.9%)主题更有可能有外部链接购买(p<0.001)。四个模型的 F1 得分(衡量模型准确性的指标)高达 0.87。
我们的研究结果表明,在青少年可访问的 YouTube 视频中,通过各种视频主题展示了各种电子烟产品,并且有折扣/销售。这些发现强调了需要对社交媒体平台上电子烟的推广进行监管。