Suppr超能文献

通过机器学习理解 YouTube 上电子烟的内容和推广。

Understanding e-cigarette content and promotion on YouTube through machine learning.

机构信息

Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA

Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.

出版信息

Tob Control. 2023 Nov;32(6):739-746. doi: 10.1136/tobaccocontrol-2021-057243. Epub 2022 May 3.

Abstract

INTRODUCTION

YouTube is a popular social media used by youth and has electronic cigarette (e-cigarette) content. We used machine learning to identify the content of e-cigarette videos, featured e-cigarette products, video uploaders, and marketing and sales of e-cigarette products.

METHODS

We identified e-cigarette content using 18 search terms (eg, e-cig) using fictitious youth viewer profiles and predicted four models using the metadata as the input to supervised machine learning: (1) video themes, (2) featured e-cigarette products, (3) channel type (ie, video uploaders) and (4) discount/sales. We assessed the association between engagement data and the four models.

RESULTS

3830 English videos were included in the supervised machine learning. The most common video theme was 'product review' (48.9%), followed by 'instruction' (eg, 'how to' use/modify e-cigarettes; 17.3%); diverse e-cigarette products were featured; 'vape enthusiasts' most frequently posted e-cigarette videos (54.0%), followed by retailers (20.3%); 43.2% of videos had discount/sales of e-cigarettes; and the most common sales strategy was external links for purchasing (34.1%). 'Vape trick' was the least common theme but had the highest engagement (eg, >2 million views). 'Cannabis' (53.9%) and 'instruction' (49.9%) themes were more likely to have external links for purchasing (p<0.001). The four models achieved an F1 score (a measure of model accuracy) of up to 0.87.

DISCUSSION

Our findings indicate that on YouTube videos accessible to youth, a variety of e-cigarette products are featured through diverse videos themes, with discount/sales. The findings highlight the need to regulate the promotion of e-cigarettes on social media platforms.

摘要

简介

YouTube 是一个深受年轻人喜爱的社交媒体平台,其中包含电子烟(e-cigarette)内容。我们使用机器学习来识别电子烟视频的内容、特色电子烟产品、视频上传者,以及电子烟产品的营销和销售情况。

方法

我们使用 18 个搜索词(例如 e-cig)通过虚构的青年观众档案来识别电子烟内容,并使用监督机器学习作为输入来预测四个模型:(1)视频主题,(2)特色电子烟产品,(3)频道类型(即视频上传者)和(4)折扣/销售。我们评估了参与度数据与这四个模型之间的关联。

结果

在监督机器学习中纳入了 3830 个英文视频。最常见的视频主题是“产品评价”(48.9%),其次是“说明”(例如,“如何”使用/修改电子烟;17.3%);展示了各种电子烟产品;电子烟爱好者最常发布电子烟视频(54.0%),其次是零售商(20.3%);43.2%的视频有电子烟的折扣/销售;最常见的销售策略是外部链接购买(34.1%)。“电子烟技巧”是最不常见的主题,但参与度最高(例如,超过 200 万次观看)。“大麻”(53.9%)和“说明”(49.9%)主题更有可能有外部链接购买(p<0.001)。四个模型的 F1 得分(衡量模型准确性的指标)高达 0.87。

讨论

我们的研究结果表明,在青少年可访问的 YouTube 视频中,通过各种视频主题展示了各种电子烟产品,并且有折扣/销售。这些发现强调了需要对社交媒体平台上电子烟的推广进行监管。

相似文献

引用本文的文献

4
Harnessing machine learning in contemporary tobacco research.当代烟草研究中机器学习的应用
Toxicol Rep. 2024 Dec 19;14:101877. doi: 10.1016/j.toxrep.2024.101877. eCollection 2025 Jun.

本文引用的文献

5
Machine learning applications in tobacco research: a scoping review.机器学习在烟草研究中的应用:范围综述。
Tob Control. 2023 Jan;32(1):99-109. doi: 10.1136/tobaccocontrol-2020-056438. Epub 2021 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验