Tschudin Märta A, Broadway David A, Siegwolf Patrick, Schrader Carolin, Telford Evan J, Gross Boris, Cox Jordan, Dubois Adrien E E, Chica Daniel G, Rama-Eiroa Ricardo, J G Santos Elton, Poggio Martino, Ziebel Michael E, Dean Cory R, Roy Xavier, Maletinsky Patrick
Department of Physics, University of Basel, Basel, Switzerland.
Department of Physics, Columbia University, New York, NY, USA.
Nat Commun. 2024 Jul 17;15(1):6005. doi: 10.1038/s41467-024-49717-9.
Since their first observation in 2017, atomically thin van der Waals (vdW) magnets have attracted significant fundamental, and application-driven attention. However, their low ordering temperatures, T, sensitivity to atmospheric conditions and difficulties in preparing clean large-area samples still present major limitations to further progress, especially amongst van der Waals magnetic semiconductors. The remarkably stable, high-T vdW magnet CrSBr has the potential to overcome these key shortcomings, but its nanoscale properties and rich magnetic phase diagram remain poorly understood. Here we use single spin magnetometry to quantitatively characterise saturation magnetization, magnetic anisotropy constants, and magnetic phase transitions in few-layer CrSBr by direct magnetic imaging. We show pristine magnetic phases, devoid of defects on micron length-scales, and demonstrate remarkable air-stability down the monolayer limit. We furthermore address the spin-flip transition in bilayer CrSBr by imaging the phase-coexistence of regions of antiferromagnetically (AFM) ordered and fully aligned spins. Our work will enable the engineering of exotic electronic and magnetic phases in CrSBr and the realization of novel nanomagnetic devices based on this highly promising vdW magnet.
自2017年首次被观测到以来,原子级薄的范德华(vdW)磁体引起了基础研究和应用驱动方面的广泛关注。然而,它们的低有序温度T、对大气条件的敏感性以及制备清洁大面积样品的困难,仍然是进一步发展的主要限制,尤其是在范德华磁性半导体中。稳定性极高、具有高温的范德华磁体CrSBr有潜力克服这些关键缺点,但其纳米尺度特性和丰富的磁相图仍知之甚少。在此,我们使用单自旋磁强计,通过直接磁成像对少层CrSBr中的饱和磁化强度、磁各向异性常数和磁相变进行定量表征。我们展示了原始磁相,在微米长度尺度上没有缺陷,并证明了直至单层极限都具有显著的空气稳定性。此外,我们通过对反铁磁(AFM)有序和完全对齐自旋区域的相共存进行成像,研究了双层CrSBr中的自旋翻转转变。我们的工作将推动对CrSBr中奇异电子和磁相的工程设计,并基于这种极有前景的范德华磁体实现新型纳米磁器件。