Suppr超能文献

肺腺癌免疫预后模型与敏感药物筛选。

Immunoprognostic model of lung adenocarcinoma and screening of sensitive drugs.

机构信息

School of Microelectronics, Shanghai University, Shanghai, 201800, China.

Department of Geriatrics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.

出版信息

Sci Rep. 2022 May 3;12(1):7162. doi: 10.1038/s41598-022-11052-8.

Abstract

Screening of mRNAs and lncRNAs associated with prognosis and immunity of lung adenocarcinoma (LUAD) and used to construct a prognostic risk scoring model (PRS-model) for LUAD. To analyze the differences in tumor immune microenvironment between distinct risk groups of LUAD based on the model classification. The CMap database was also used to screen potential therapeutic compounds for LUAD based on the differential genes between distinct risk groups. he data from the Cancer Genome Atlas (TCGA) database. We divided the transcriptome data into a mRNA subset and a lncRNA subset, and use multiple methods to extract mRNAs and lncRNAs associated with immunity and prognosis. We further integrated the mRNA and lncRNA subsets and the corresponding clinical information, randomly divided them into training and test set according to the ratio of 5:5. Then, we performed the Cox risk proportional analysis and cross-validation on the training set to construct a LUAD risk scoring model. Based on the risk scoring model, patients were divided into distinct risk group. Moreover, we evaluate the prognostic performance of the model from the aspects of Area Under Curve (AUC) analysis, survival difference analysis, and independent prognostic analysis. We analyzed the differences in the expression of immune cells between the distinct risk groups, and also discuss the connection between immune cells and patient survival. Finally, we screened the potential therapeutic compounds of LUAD in the Connectivity Map (CMap) database based on differential gene expression profiles, and verified the compound activity by cytostatic assays. We extracted 26 mRNAs and 74 lncRNAs related to prognosis and immunity by using different screening methods. Two mRNAs (i.e., KLRC3 and RAET1E) and two lncRNAs (i.e., AL590226.1 and LINC00941) and their risk coefficients were finally used to construct the PRS-model. The risk score positions of the training and test set were 1.01056590 and 1.00925190, respectively. The expression of mRNAs involved in model construction differed significantly between the distinct risk population. The one-year ROC areas on the training and test sets were 0.735 and 0.681. There was a significant difference in the survival rate of the two groups of patients. The PRS-model had independent predictive capabilities in both training and test sets. Among them, in the group with low expression of M1 macrophages and resting NK cells, LUAD patients survived longer. In contrast, the monocyte expression up-regulated group survived longer. In the CMap drug screening, three LUAD therapeutic compounds, such as resveratrol, methotrexate, and phenoxybenzamine, scored the highest. In addition, these compounds had significant inhibitory effects on the LUAD A549 cell lines. The LUAD risk score model constructed using the expression of KLRC3, RAET1E, AL590226.1, LINC00941 and their risk coefficients had a good independent prognostic power. The optimal LUAD therapeutic compounds screened in the CMap database: resveratrol, methotrexate and phenoxybenzamine, all showed significant inhibitory effects on LUAD A549 cell lines.

摘要

筛选与肺腺癌(LUAD)预后和免疫相关的 mRNAs 和 lncRNAs,并用于构建 LUAD 的预后风险评分模型(PRS 模型)。基于模型分类,分析不同 LUAD 风险组之间肿瘤免疫微环境的差异。还使用 CMap 数据库基于不同风险组之间的差异基因筛选 LUAD 的潜在治疗化合物。来自癌症基因组图谱(TCGA)数据库的数据。我们将转录组数据分为 mRNA 子集和 lncRNA 子集,并使用多种方法提取与免疫和预后相关的 mRNAs 和 lncRNAs。我们进一步整合 mRNA 和 lncRNA 子集及其相应的临床信息,根据 5:5 的比例随机将它们分为训练集和测试集。然后,我们对训练集进行 Cox 风险比例分析和交叉验证,以构建 LUAD 风险评分模型。基于风险评分模型,将患者分为不同的风险组。此外,我们从 AUC 分析、生存差异分析和独立预后分析等方面评估模型的预后性能。我们分析了不同风险组之间免疫细胞表达的差异,并讨论了免疫细胞与患者生存之间的联系。最后,我们基于差异基因表达谱在 Connectivity Map(CMap)数据库中筛选 LUAD 的潜在治疗化合物,并通过细胞增殖测定验证化合物的活性。我们使用不同的筛选方法提取了 26 个与预后和免疫相关的 mRNAs 和 74 个 lncRNAs。最终使用两个 mRNAs(即 KLRC3 和 RAET1E)和两个 lncRNAs(即 AL590226.1 和 LINC00941)及其风险系数构建 PRS 模型。训练集和测试集的风险评分位置分别为 1.01056590 和 1.00925190。模型构建中涉及的 mRNAs 的表达在不同风险人群之间存在显著差异。训练集和测试集的一年 ROC 面积分别为 0.735 和 0.681。两组患者的生存率存在显著差异。PRS 模型在训练集和测试集中均具有独立的预测能力。其中,在 M1 巨噬细胞和静止 NK 细胞表达下调的组中,LUAD 患者的生存期更长。相反,单核细胞表达上调的组生存期更长。在 CMap 药物筛选中,三种 LUAD 治疗化合物,如白藜芦醇、甲氨蝶呤和苯氧苄胺,得分最高。此外,这些化合物对 LUAD A549 细胞系具有显著的抑制作用。使用 KLRC3、RAET1E、AL590226.1、LINC00941 及其风险系数的表达构建的 LUAD 风险评分模型具有良好的独立预后能力。CMap 数据库中筛选出的最佳 LUAD 治疗化合物:白藜芦醇、甲氨蝶呤和苯氧苄胺,均对 LUAD A549 细胞系表现出显著的抑制作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3762/9065161/5b4666db74d7/41598_2022_11052_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验