Suppr超能文献

血浆细胞外囊泡长链RNA在小细胞肺癌诊断与预测中的应用

Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer.

作者信息

Liu Chang, Chen Jinying, Liao Jiatao, Li Yuchen, Yu Hui, Zhao Xinmin, Sun Si, Hu Zhihuang, Zhang Yao, Zhu Zhengfei, Fan Min, Huang Shenglin, Wang Jialei

机构信息

Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.

出版信息

Cancers (Basel). 2022 Nov 9;14(22):5493. doi: 10.3390/cancers14225493.

Abstract

(1) Introduction: The aim of this study was to identify the plasma extracellular vesicle (EV)-specific transcriptional profile in small-cell lung cancer (SCLC) and to explore the application value of plasma EV long RNA (exLR) in SCLC treatment prediction and diagnosis. (2) Methods: Plasma samples were collected from 57 SCLC treatment-naive patients, 104 non-small-cell lung cancer (NSCLC) patients and 59 healthy participants. The SCLC patients were divided into chemo-sensitive and chemo-refractory groups based on the therapeutic effects. The exLR profiles of the plasma samples were analyzed by high-throughput sequencing. Bioinformatics approaches were used to investigate the differentially expressed exLRs and their biofunctions. Finally, a t-signature was constructed using logistic regression for SCLC treatment prediction and diagnosis. (3) Results: We obtained 220 plasma exLRs profiles in all the participants. Totals of 5787 and 1207 differentially expressed exLRs were identified between SCLC/healthy controls, between the chemo-sensitive/chemo-refractory groups, respectively. Furthermore, we constructed a t-signature that comprised ten exLRs, including EPCAM, CCNE2, CDC6, KRT8, LAMB1, CALB2, STMN1, UCHL1, HOXB7 and CDCA7, for SCLC treatment prediction and diagnosis. The exLR t-score effectively distinguished the chemo-sensitive from the chemo-refractory group ( = 9.268 × 10) with an area under the receiver operating characteristic curve (AUC) of 0.9091 (95% CI: 0.837 to 0.9811) and distinguished SCLC from healthy controls (AUC: 0.9643; 95% CI: 0.9256-1) and NSCLC (AUC: 0.721; 95% CI: 0.6384-0.8036). (4) Conclusions: This study firstly characterized the plasma exLR profiles of SCLC patients and verified the feasibility and value of identifying biomarkers based on exLR profiles in SCLC diagnosis and treatment prediction.

摘要

(1) 引言:本研究旨在确定小细胞肺癌(SCLC)患者血浆细胞外囊泡(EV)特异性转录谱,并探索血浆EV长链RNA(exLR)在SCLC治疗预测和诊断中的应用价值。(2) 方法:收集了57例未经治疗的SCLC患者、104例非小细胞肺癌(NSCLC)患者和59名健康参与者的血浆样本。根据治疗效果将SCLC患者分为化疗敏感组和化疗耐药组。采用高通量测序分析血浆样本的exLR谱。运用生物信息学方法研究差异表达的exLR及其生物学功能。最后,使用逻辑回归构建用于SCLC治疗预测和诊断的t特征。(3) 结果:我们获得了所有参与者的220个血浆exLR谱。在SCLC/健康对照之间、化疗敏感/化疗耐药组之间分别鉴定出5787个和1207个差异表达的exLR。此外,我们构建了一个由10个exLR组成的t特征,包括EPCAM、CCNE2、CDC6、KRT8、LAMB1、CALB2、STMN1、UCHL1、HOXB7和CDCA7,用于SCLC治疗预测和诊断。exLR t评分能够有效区分化疗敏感组和化疗耐药组(= 9.268 × 10),受试者工作特征曲线(AUC)下面积为0.9091(95% CI:0.837至0.9811),并能区分SCLC与健康对照(AUC:0.9643;95% CI:0.9256 - 1)以及NSCLC(AUC:0.721;95% CI:0.6384 - 0.8036)。(4) 结论:本研究首次描绘了SCLC患者的血浆exLR谱,并验证了基于exLR谱鉴定生物标志物在SCLC诊断和治疗预测中的可行性和价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce54/9688902/269ecb950ae7/cancers-14-05493-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验