Suppr超能文献

采用衍射网络的可级联全光与非门。

Cascadable all-optical NAND gates using diffractive networks.

作者信息

Luo Yi, Mengu Deniz, Ozcan Aydogan

机构信息

Electrical and Computer Engineering Department, University of California, 420 Westwood Plaza, Engr. IV 68-119, UCLA, Los Angeles, CA, 90095, USA.

Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.

出版信息

Sci Rep. 2022 May 3;12(1):7121. doi: 10.1038/s41598-022-11331-4.

Abstract

Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as [Formula: see text] and [Formula: see text], respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms.

摘要

由于其具有可扩展性、低延迟和功率效率等潜在优势,光学计算在过去几十年中取得了快速进展。在此,我们展示了使用衍射神经网络的可级联全光与非门的设计与分析。我们利用两个空间分离孔径的相对光功率在衍射与非门的输入和输出平面上对逻辑值进行编码。基于此架构,我们对由4个无源层组成的衍射神经网络进行了数值优化,以利用光的衍射全光执行与非运算,并通过将一个衍射与非门的输出依次馈入另一个衍射与非门来级联这些衍射与非门,以执行复杂的逻辑功能。我们通过使用相同的衍射设计全光执行与运算和或运算(分别可表示为[公式:见原文]和[公式:见原文]),从数值上证明了我们的衍射与非门的可级联性。我们还设计了一种全光半加器,它以两个逻辑值作为输入,并使用级联的衍射与非门返回它们的和与进位。由空间工程化无源衍射层组成的可级联全光与非门可服务于光学计算平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验