Suppr超能文献

利用衍射表面进行任意线性变换的全光合成。

All-optical synthesis of an arbitrary linear transformation using diffractive surfaces.

作者信息

Kulce Onur, Mengu Deniz, Rivenson Yair, Ozcan Aydogan

机构信息

Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.

Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.

出版信息

Light Sci Appl. 2021 Sep 24;10(1):196. doi: 10.1038/s41377-021-00623-5.

Abstract

Spatially-engineered diffractive surfaces have emerged as a powerful framework to control light-matter interactions for statistical inference and the design of task-specific optical components. Here, we report the design of diffractive surfaces to all-optically perform arbitrary complex-valued linear transformations between an input (N) and output (N), where N and N represent the number of pixels at the input and output fields-of-view (FOVs), respectively. First, we consider a single diffractive surface and use a matrix pseudoinverse-based method to determine the complex-valued transmission coefficients of the diffractive features/neurons to all-optically perform a desired/target linear transformation. In addition to this data-free design approach, we also consider a deep learning-based design method to optimize the transmission coefficients of diffractive surfaces by using examples of input/output fields corresponding to the target transformation. We compared the all-optical transformation errors and diffraction efficiencies achieved using data-free designs as well as data-driven (deep learning-based) diffractive designs to all-optically perform (i) arbitrarily-chosen complex-valued transformations including unitary, nonunitary, and noninvertible transforms, (ii) 2D discrete Fourier transformation, (iii) arbitrary 2D permutation operations, and (iv) high-pass filtered coherent imaging. Our analyses reveal that if the total number (N) of spatially-engineered diffractive features/neurons is ≥N × N, both design methods succeed in all-optical implementation of the target transformation, achieving negligible error. However, compared to data-free designs, deep learning-based diffractive designs are found to achieve significantly larger diffraction efficiencies for a given N and their all-optical transformations are more accurate for N < N × N. These conclusions are generally applicable to various optical processors that employ spatially-engineered diffractive surfaces.

摘要

空间工程衍射表面已成为一种强大的框架,用于控制光与物质的相互作用,以进行统计推断和设计特定任务的光学组件。在此,我们报告了衍射表面的设计,以全光方式在输入(N)和输出(N)之间执行任意复值线性变换,其中N和N分别表示输入和输出视场(FOV)处的像素数量。首先,我们考虑单个衍射表面,并使用基于矩阵伪逆的方法来确定衍射特征/神经元的复值传输系数,以全光方式执行所需的/目标线性变换。除了这种无数据设计方法外,我们还考虑基于深度学习的设计方法,通过使用与目标变换对应的输入/输出场示例来优化衍射表面的传输系数。我们比较了使用无数据设计以及数据驱动(基于深度学习)的衍射设计全光执行(i)任意选择的复值变换,包括酉变换、非酉变换和不可逆变换,(ii)二维离散傅里叶变换,(iii)任意二维置换操作,以及(iv)高通滤波相干成像所实现的全光变换误差和衍射效率。我们的分析表明,如果空间工程衍射特征/神经元的总数(N)≥N×N,则两种设计方法都能成功地全光实现目标变换,误差可忽略不计。然而,与无数据设计相比,发现基于深度学习的衍射设计在给定的N下能实现显著更高的衍射效率,并且它们的全光变换在N<N×N时更准确。这些结论通常适用于各种采用空间工程衍射表面的光学处理器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4d/8463717/978e1bfd9fd6/41377_2021_623_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验