Suppr超能文献

用于1位加法器的全介质超表面衍射神经网络。

All dielectric metasurface based diffractive neural networks for 1-bit adder.

作者信息

Liu Yufei, Chen Weizhu, Wang Xinke, Zhang Yan

机构信息

Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing, 100048, China.

出版信息

Nanophotonics. 2024 Jan 24;13(8):1449-1458. doi: 10.1515/nanoph-2023-0760. eCollection 2024 Apr.

Abstract

Diffractive deep neural networks ( ) have brought significant changes in many fields, motivating the development of diverse optical computing components. However, a crucial downside in the optical computing components is employing diffractive optical elements (DOEs) which were fabricated using commercial 3D printers. DOEs simultaneously suffer from the challenges posed by high-order diffraction and low spatial utilization since the size of individual neuron is comparable to the wavelength scale. Here, we present a design of based on all-dielectric metasurfaces which substantially reduces the individual neuron size of net to scale significantly smaller than the wavelength. Metasurface-based optical computational elements can offer higher spatial neuron density while completely eliminate high-order diffraction. We numerically simulated an optical half-adder and experimentally verified it in the terahertz frequency. The optical half-adder employed a compact network with only two diffraction layers. Each layer has a size of 2 × 2 cm but integrated staggering 40,000 neurons. The metasurface-based can further facilitate miniaturization and integration of all optical computing devices and will find applications in numerous fields such as terahertz 6G communication, photonics integrated circuits, and intelligent sensors.

摘要

衍射深度神经网络( )在许多领域带来了重大变革,推动了各种光学计算组件的发展。然而,光学计算组件中的一个关键缺点是采用了使用商用3D打印机制造的衍射光学元件(DOE)。由于单个神经元的尺寸与波长尺度相当,DOE同时面临高阶衍射和低空间利用率带来的挑战。在这里,我们提出了一种基于全介质超表面的 设计,该设计大幅减小了网络中单个神经元的尺寸,使其比波长小得多。基于超表面的光学计算元件可以提供更高的空间神经元密度,同时完全消除高阶衍射。我们对一个光学半加器进行了数值模拟,并在太赫兹频率下进行了实验验证。该光学半加器采用了一个仅具有两个衍射层的紧凑网络。每层尺寸为2×2厘米,但集成了交错排列的40,000个神经元。基于超表面的 可以进一步促进所有光学计算设备的小型化和集成,并将在太赫兹6G通信、光子集成电路和智能传感器等众多领域找到应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6ae/11636410/3fb18635ddee/j_nanoph-2023-0760_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验