Suppr超能文献

利用RGB、高光谱和荧光成像及传感器融合技术对高粱叶片叶绿素含量进行高通量分析。

High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion.

作者信息

Zhang Huichun, Ge Yufeng, Xie Xinyan, Atefi Abbas, Wijewardane Nuwan K, Thapa Suresh

机构信息

College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.

出版信息

Plant Methods. 2022 May 3;18(1):60. doi: 10.1186/s13007-022-00892-0.

Abstract

BACKGROUND

Leaf chlorophyll content plays an important role in indicating plant stresses and nutrient status. Traditional approaches for the quantification of chlorophyll content mainly include acetone ethanol extraction, spectrophotometry and high-performance liquid chromatography. Such destructive methods based on laboratory procedures are time consuming, expensive, and not suitable for high-throughput analysis. High throughput imaging techniques are now widely used for non-destructive analysis of plant phenotypic traits. In this study three imaging modules (RGB, hyperspectral, and fluorescence imaging) were, separately and in combination, used to estimate chlorophyll content of sorghum plants in a greenhouse environment. Color features, spectral indices, and chlorophyll fluorescence intensity were extracted from these three types of images, and multiple linear regression models and PLSR (partial least squares regression) models were built to predict leaf chlorophyll content (measured by a handheld leaf chlorophyll meter) from the image features.

RESULTS

The models with a single color feature from RGB images predicted chlorophyll content with R ranging from 0.67 to 0.88. The models using the three spectral indices extracted from hyperspectral images (Ration Vegetation Index, Normalized Difference Vegetation Index, and Modified Chlorophyll Absorption Ratio Index) predicted chlorophyll content with R ranging from 0.77 to 0.78. The model using the fluorescence intensity extracted from fluorescence images predicted chlorophyll content with R of 0.79. The PLSR model that involved all the image features extracted from the three different imaging modules exhibited the best performance for predicting chlorophyll content, with R of 0.90. It was also found that inclusion of SLW (Specific Leaf Weight) into the image-based models further improved the chlorophyll prediction accuracy.

CONCLUSION

All three imaging modules (RGB, hyperspectral, and fluorescence) tested in our study alone could estimate chlorophyll content of sorghum plants reasonably well. Fusing image features from different imaging modules with PLSR modeling significantly improved the predictive performance. Image-based phenotyping could provide a rapid and non-destructive approach for estimating chlorophyll content in sorghum.

摘要

背景

叶片叶绿素含量在指示植物胁迫和营养状况方面起着重要作用。传统的叶绿素含量定量方法主要包括丙酮乙醇提取法、分光光度法和高效液相色谱法。这些基于实验室程序的破坏性方法耗时、昂贵,且不适用于高通量分析。高通量成像技术目前广泛用于植物表型性状的无损分析。在本研究中,三个成像模块(RGB、高光谱和荧光成像)分别单独使用以及组合使用,以估计温室环境中高粱植株的叶绿素含量。从这三种类型的图像中提取颜色特征、光谱指数和叶绿素荧光强度,并建立多元线性回归模型和偏最小二乘回归(PLSR)模型,以根据图像特征预测叶片叶绿素含量(通过手持式叶片叶绿素仪测量)。

结果

基于RGB图像单个颜色特征的模型预测叶绿素含量的决定系数(R)范围为0.67至0.88。使用从高光谱图像中提取的三个光谱指数(比值植被指数、归一化植被指数和修正叶绿素吸收比值指数)的模型预测叶绿素含量的R范围为0.77至0.78。使用从荧光图像中提取的荧光强度的模型预测叶绿素含量的R为0.79。涉及从三个不同成像模块提取的所有图像特征的PLSR模型在预测叶绿素含量方面表现最佳,R为0.90。还发现将比叶重(SLW)纳入基于图像的模型可进一步提高叶绿素预测准确性。

结论

我们研究中测试的所有三个成像模块(RGB、高光谱和荧光)单独使用时都能较好地估计高粱植株的叶绿素含量。将不同成像模块的图像特征与PLSR建模相结合可显著提高预测性能。基于图像的表型分析可为估算高粱中的叶绿素含量提供一种快速且无损的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验