Suppr超能文献

PfMDR1 和 PfCRT 多态性赋予疟原虫多药耐药和交叉药物敏感性的机制基础。

Mechanistic basis for multidrug resistance and collateral drug sensitivity conferred to the malaria parasite by polymorphisms in PfMDR1 and PfCRT.

机构信息

Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.

出版信息

PLoS Biol. 2022 May 4;20(5):e3001616. doi: 10.1371/journal.pbio.3001616. eCollection 2022 May.

Abstract

Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite's susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite's susceptibility to lumefantrine and mefloquine-a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite's digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine's access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.

摘要

疟原虫多药耐药蛋白 1(PfMDR1)基因和疟原虫氯喹耐药转运蛋白(pfcrt)基因的多态性改变了疟原虫对大多数当前抗疟药物的敏感性。然而,PfMDR1 如何导致多药耐药的确切机制尚未完全阐明,也不清楚为什么导致氯喹耐药的 pfmdr1 和 pfcrt 多态性同时增加寄生虫对青蒿素和甲氟喹的敏感性——这种现象被称为药物交叉敏感性。在这里,我们在非洲爪蟾卵母细胞中建立了 PfMDR1 的稳健表达系统,该系统能够直接和高分辨率地对该蛋白进行生化特性分析。我们发现野生型 PfMDR1 可转运多种药物,包括青蒿素、甲氟喹、二氢青蒿素、哌喹、阿莫地喹、亚甲蓝和氯喹(但不包括抗病毒药物金刚烷胺)。来自现场的 PfMDR1 突变体同工型与野生型蛋白在转运这些药物的能力上存在差异,表明 PfMDR1 诱导的药物在寄生虫的消化液泡(DV)和细胞质之间的分布变化是导致抗疟药耐药性和多药耐药表型之间差异的关键驱动因素。值得注意的是,在氯喹耐药分离株中普遍存在的 PfMDR1 同工型对氯喹、青蒿素和甲氟喹的转运能力降低。我们观察到 PfCRT 中的氯喹耐药相关突变与药物转运活性之间的相反关系。使用我们在非洲爪蟾卵母细胞系统和活体寄生虫测定中建立的 PfCRT 特征分析方法,我们证明这些 PfCRT 同工型可转运所有 3 种药物,而野生型 PfCRT 则不能。我们提出了一种药物交叉敏感性的机制模型,其中 PfMDR1 和 PfCRT 的突变同工型导致氯喹、青蒿素和甲氟喹留在细胞质中,而不是在 DV 中隔离。这种药物分布的变化增加了青蒿素和甲氟喹与它们的主要靶标(据信位于 DV 之外)的接触机会,同时降低了氯喹在 DV 内的靶标接触机会。这里提出的机制见解为开发方法提供了基础,这些方法通过利用它们对 PfCRT 和 PfMDR1 施加的相反选择力,延长了抗疟药物的有效寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f177/9067703/215ff36cc1f6/pbio.3001616.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验