Suppr超能文献

对N2-酰基四氢-β-咔啉抗疟药的立体特异性抗性由赋予附带药物敏感性的PfMDR1突变介导。

Stereospecific Resistance to N2-Acyl Tetrahydro-β-carboline Antimalarials Is Mediated by a PfMDR1 Mutation That Confers Collateral Drug Sensitivity.

作者信息

Bremers Emily K, Butler Joshua H, Do Amaral Leticia S, Merino Emilio F, Almolhim Hanan, Zhou Bo, Baptista Rodrigo P, Totrov Maxim, Carlier Paul R, Cassera Maria Belen

机构信息

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.

Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States.

出版信息

ACS Infect Dis. 2025 Feb 14;11(2):529-542. doi: 10.1021/acsinfecdis.4c01001. Epub 2025 Jan 14.

Abstract

Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus . Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite. To better understand its mechanism of action, we selected for and characterized resistance to PRC1590 in . Through selection of resistance to PRC1590, we have identified that a single-nucleotide polymorphism on the parasite's multidrug resistance protein 1 (PfMDR1 G293V) mediates resistance to PRC1590. This mutation results in stereospecific resistance and sensitizes parasites to other antimalarials, such as mefloquine, quinine, and MMV019017. Intraerythrocytic asexual stage specificity assays have revealed that PRC1590 is most potent during the trophozoite stage when the parasite forms a single digestive vacuole (DV) and actively digests hemoglobin. Moreover, fluorescence microscopy revealed that PRC1590 disrupts the function of the DV, indicating a potential molecular target associated with this organelle. Our findings mark a significant step in understanding the mechanism of resistance and the mode of action of this emerging class of antimalarials. In addition, our results suggest a potential link between resistance mediated by PfMDR1 and PRC1590's molecular target. This research underscores the pressing need for future research aimed at investigating the intricate relationship between a compound's chemical scaffold, molecular target, and resistance mutations associated with PfMDR1.

摘要

全球一半人口面临感染疟疾的风险,疟疾由疟原虫属寄生虫引起。目前,已发现对所有临床可用抗疟药均产生了耐药性,这凸显了开发新型化合物以及更好地了解耐药性常见机制的迫切需求。我们之前鉴定出一种新型四氢-β-咔啉化合物PRC1590,它能有效杀死疟原虫。为了更好地了解其作用机制,我们在疟原虫中筛选并鉴定了对PRC1590的耐药性。通过对PRC1590耐药性的筛选,我们确定疟原虫多药耐药蛋白1(PfMDR1 G293V)上的一个单核苷酸多态性介导了对PRC1590的耐药性。这种突变导致立体特异性耐药,并使疟原虫对其他抗疟药敏感,如甲氟喹、奎宁和MMV019017。红细胞内无性阶段特异性试验表明,PRC1590在滋养体阶段最有效,此时疟原虫形成单个消化泡(DV)并积极消化血红蛋白。此外,荧光显微镜显示PRC1590破坏了DV的功能,表明与该细胞器相关的潜在分子靶点。我们的研究结果标志着在理解这类新型抗疟药的耐药机制和作用模式方面迈出了重要一步。此外,我们的结果表明PfMDR1介导的耐药性与PRC1590的分子靶点之间存在潜在联系。这项研究强调了未来开展研究的迫切需求,旨在探究化合物的化学支架、分子靶点以及与PfMDR1相关的耐药性突变之间的复杂关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c02e/11833873/d21d8b53dee9/id4c01001_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验