Suppr超能文献

Egger 回归在孟德尔随机化中的实际问题。

A practical problem with Egger regression in Mendelian randomization.

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America.

Pomona College, Claremont, California, United States of America.

出版信息

PLoS Genet. 2022 May 4;18(5):e1010166. doi: 10.1371/journal.pgen.1010166. eCollection 2022 May.

Abstract

Mendelian randomization (MR) is an instrumental variable (IV) method using genetic variants such as single nucleotide polymorphisms (SNPs) as IVs to disentangle the causal relationship between an exposure and an outcome. Since any causal conclusion critically depends on the three valid IV assumptions, which will likely be violated in practice, MR methods robust to the IV assumptions are greatly needed. As such a method, Egger regression stands out as one of the most widely used due to its easy use and perceived robustness. Although Egger regression is claimed to be robust to directional pleiotropy under the instrument strength independent of direct effect (InSIDE) assumption, it is known to be dependent on the orientations/coding schemes of SNPs (i.e. which allele of an SNP is selected as the reference group). The current practice, as recommended as the default setting in some popular MR software packages, is to orientate the SNPs to be all positively associated with the exposure, which however, to our knowledge, has not been fully studied to assess its robustness and potential impact. We use both numerical examples (with both real data and simulated data) and analytical results to demonstrate the practical problem of Egger regression with respect to its heavy dependence on the SNP orientations. Under the assumption that InSIDE holds for some specific (and unknown) coding scheme of the SNPs, we analytically show that other coding schemes would in general lead to the violation of InSIDE. Other related MR and IV regression methods may suffer from the same problem. Cautions should be taken when applying Egger regression (and related MR and IV regression methods) in practice.

摘要

孟德尔随机化(MR)是一种工具变量(IV)方法,它使用遗传变异,如单核苷酸多态性(SNP)作为 IV,以理清暴露与结果之间的因果关系。由于任何因果结论都取决于三个有效的 IV 假设,而这些假设在实践中很可能会被违反,因此非常需要对 IV 假设具有稳健性的 MR 方法。作为一种这样的方法,Egger 回归因其易于使用和被认为的稳健性而脱颖而出。尽管 Egger 回归被声称在与工具强度独立的直接效应(InSIDE)假设下对方向性多效性具有稳健性,但它已知依赖于 SNP 的方向/编码方案(即 SNP 的哪个等位基因被选为参考组)。目前的实践,如一些流行的 MR 软件包中推荐的默认设置,是将 SNP 全部定向为与暴露呈正相关,然而,据我们所知,尚未对其稳健性和潜在影响进行全面研究。我们使用数值示例(包括真实数据和模拟数据)和分析结果来证明 Egger 回归在 SNP 方向上的严重依赖方面存在实际问题。在假设 InSIDE 适用于 SNP 的某些特定(和未知)编码方案的情况下,我们从理论上证明,其他编码方案通常会违反 InSIDE。其他相关的 MR 和 IV 回归方法可能也存在同样的问题。在实践中应用 Egger 回归(和相关的 MR 和 IV 回归方法)时应谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c65/9109933/e45548c6a3d0/pgen.1010166.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验