Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.
J Phys Chem B. 2022 May 19;126(19):3522-3529. doi: 10.1021/acs.jpcb.2c01632. Epub 2022 May 4.
Electron transport through biomolecules and in biological transport networks is of great importance to bioenergetics and biocatalysis. More generally, it is of crucial importance to understand how the pathways that connect buried metallocofactors to other cofactors, and to protein surfaces, affect the biological chemistry of metalloproteins. In terms of electron transfer (ET), the strongest coupling pathways usually comprise covalent and hydrogen bonded networks, with a limited number of through-space contacts. Herein, we set out to determine the relative roles of hydrogen bonds involved in ET via an established heme-to-surface tunneling pathway in cytochrome (cyt) (i.e., heme-W59-D60-E61-N62). A series of cyt variants were produced where a ruthenium tris(diimine) photooxidant was placed at position 62 via covalent modification of the N62C residue. Surprisingly, variants where the H-bonding residues W59 and D60 were replaced (i.e., W59F and D60A) showed no change in ET rate from the ferrous heme to Ru(III). In contrast, changing the composition of an alternative tunneling pathway (i.e., heme-M64-N63-C62) with the M64L substitution shows a factor of 2 decrease in the rate of heme-to-Ru ET. This pathway involves a through-space tunneling step between the heme and M64 residue, and such steps are usually disfavored. To rationalize why the heme-M64-N63-C62 is preferred, molecular dynamics (MD) simulations and Pathways analysis were employed. These simulations show that the change in heme-Ru ET rates is attributed to different conformations with compressed donor-acceptor distances, by ∼2 Å in pathway distance, in the M64-containing protein as compared to the M64L protein. The change in distance is correlated with changes in the electronic coupling that are in accord with the experimentally observed heme-Ru ET rates. Remarkably, the M64L variation at the core of the protein translates to changes in cofactor dynamics at the protein surface. The surface changes identified by MD simulations include dynamic anion-π and dipole-dipole interactions. These interactions influence the strength of tunneling pathways and ET rates by facilitating decreases in through-space tunneling distances in key coupling pathways.
电子在生物分子和生物传输网络中的传输对于生物能量学和生物催化至关重要。更广泛地说,了解连接埋藏金属辅因子与其他辅因子以及蛋白质表面的途径如何影响金属蛋白的生物化学性质至关重要。就电子转移 (ET) 而言,最强的耦合途径通常包括共价和氢键网络,只有有限数量的空间接触。在此,我们着手确定通过细胞色素 (cyt) (即血红素-W59-D60-E61-N62) 中已建立的血红素到表面隧穿途径参与 ET 的氢键的相对作用。通过共价修饰 N62C 残基,将钌三 (二亚胺) 光氧化剂置于位置 62 处,产生了一系列 cyt 变体。令人惊讶的是,取代氢键残基 W59 和 D60 (即 W59F 和 D60A) 的变体在亚铁血红素到 Ru(III) 的 ET 速率上没有变化。相比之下,用 M64L 取代改变替代隧穿途径 (即血红素-M64-N63-C62) 的组成会使血红素到 Ru ET 的速率降低 2 倍。该途径涉及血红素和 M64 残基之间的空间隧穿步骤,通常不支持这种步骤。为了合理说明为什么首选血红素-M64-N63-C62,我们采用了分子动力学 (MD) 模拟和途径分析。这些模拟表明,血红素-Ru ET 速率的变化归因于具有压缩供体-受体距离的不同构象,在包含 M64 的蛋白质中,途径距离约为 2 Å,与 M64L 蛋白质相比。距离的变化与实验观察到的血红素-Ru ET 速率一致的电子耦合变化相关。值得注意的是,蛋白质核心处的 M64L 变化转化为蛋白质表面辅助因子动力学的变化。MD 模拟确定的表面变化包括动态阴离子-π 和偶极-偶极相互作用。这些相互作用通过促进关键耦合途径中空间隧穿距离的减小来影响隧穿途径和 ET 速率的强度。