Suppr超能文献

最小-最大相似度:一种用于手术工具分割的对比半监督深度学习网络。

Min-Max Similarity: A Contrastive Semi-Supervised Deep Learning Network for Surgical Tools Segmentation.

出版信息

IEEE Trans Med Imaging. 2023 Oct;42(10):2832-2841. doi: 10.1109/TMI.2023.3266137. Epub 2023 Oct 2.

Abstract

A common problem with segmentation of medical images using neural networks is the difficulty to obtain a significant number of pixel-level annotated data for training. To address this issue, we proposed a semi-supervised segmentation network based on contrastive learning. In contrast to the previous state-of-the-art, we introduce Min-Max Similarity (MMS), a contrastive learning form of dual-view training by employing classifiers and projectors to build all-negative, and positive and negative feature pairs, respectively, to formulate the learning as solving a MMS problem. The all-negative pairs are used to supervise the networks learning from different views and to capture general features, and the consistency of unlabeled predictions is measured by pixel-wise contrastive loss between positive and negative pairs. To quantitatively and qualitatively evaluate our proposed method, we test it on four public endoscopy surgical tool segmentation datasets and one cochlear implant surgery dataset, which we manually annotated. Results indicate that our proposed method consistently outperforms state-of-the-art semi-supervised and fully supervised segmentation algorithms. And our semi-supervised segmentation algorithm can successfully recognize unknown surgical tools and provide good predictions. Also, our MMS approach could achieve inference speeds of about 40 frames per second (fps) and is suitable to deal with the real-time video segmentation.

摘要

使用神经网络对医学图像进行分割的一个常见问题是难以获得大量用于训练的像素级标注数据。为了解决这个问题,我们提出了一种基于对比学习的半监督分割网络。与之前的最先进方法不同,我们引入了 Min-Max 相似度(MMS),这是一种通过使用分类器和投影器来构建所有负对和正负特征对的双视图训练的对比学习形式,分别将学习表示为解决 MMS 问题。所有负对用于监督网络从不同视图学习并捕获通用特征,并且通过正、负对之间的像素级对比损失来衡量未标记预测的一致性。为了定量和定性地评估我们提出的方法,我们在四个公开的内窥镜手术工具分割数据集和一个手动标注的人工耳蜗植入手术数据集上进行了测试。结果表明,我们提出的方法始终优于最先进的半监督和全监督分割算法。而且,我们的半监督分割算法可以成功识别未知的手术工具并提供良好的预测。此外,我们的 MMS 方法可以实现约 40 帧每秒(fps)的推断速度,并且适合处理实时视频分割。

相似文献

4
Dual-branch Transformer for semi-supervised medical image segmentation.双分支Transformer 用于半监督医学图像分割。
J Appl Clin Med Phys. 2024 Oct;25(10):e14483. doi: 10.1002/acm2.14483. Epub 2024 Aug 12.

引用本文的文献

3
SegMatch: semi-supervised surgical instrument segmentation.SegMatch:半监督手术器械分割
Sci Rep. 2025 Apr 23;15(1):14042. doi: 10.1038/s41598-025-94568-z.

本文引用的文献

2
Contrastive Learning With Stronger Augmentations.对比增强的对比学习。
IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):5549-5560. doi: 10.1109/TPAMI.2022.3203630. Epub 2023 Apr 3.
5
CaDIS: Cataract dataset for surgical RGB-image segmentation.CaDIS:用于手术 RGB 图像分割的白内障数据集。
Med Image Anal. 2021 Jul;71:102053. doi: 10.1016/j.media.2021.102053. Epub 2021 Mar 31.
7
Image Compositing for Segmentation of Surgical Tools Without Manual Annotations.无需人工标注的手术工具分割图像合成
IEEE Trans Med Imaging. 2021 May;40(5):1450-1460. doi: 10.1109/TMI.2021.3057884. Epub 2021 Apr 30.
8
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
9
Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation.用于半监督医学图像分割的变换一致自集成模型。
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):523-534. doi: 10.1109/TNNLS.2020.2995319. Epub 2021 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验