文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

DAISM-DNN: Highly accurate cell type proportion estimation with data augmentation and deep neural networks.

作者信息

Lin Yating, Li Haojun, Xiao Xu, Zhang Lei, Wang Kejia, Zhao Jingbo, Wang Minshu, Zheng Frank, Zhang Minwei, Yang Wenxian, Han Jiahuai, Yu Rongshan

机构信息

School of Informatics, Xiamen University, Xiamen 361005, China.

National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China.

出版信息

Patterns (N Y). 2022 Feb 3;3(3):100440. doi: 10.1016/j.patter.2022.100440. eCollection 2022 Mar 11.


DOI:10.1016/j.patter.2022.100440
PMID:35510186
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9058910/
Abstract

Understanding the immune cell abundance of cancer and other disease-related tissues has an important role in guiding disease treatments. Computational cell type proportion estimation methods have been previously developed to derive such information from bulk RNA sequencing data. Unfortunately, our results show that the performance of these methods can be seriously plagued by the mismatch between training data and real-world data. To tackle this issue, we propose the DAISM-DNN (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (denoted as DAISM-DNN) pipeline that trains a deep neural network (DNN) with dataset-specific training data populated from a certain amount of calibrated samples using DAISM, a novel data augmentation method with an mixing strategy. The evaluation results demonstrate that the DAISM-DNN pipeline outperforms other existing methods consistently and substantially for all the cell types under evaluation in real-world datasets.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/e51b8a25f29d/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/9042961c4282/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/529084c935fe/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/a76247419a60/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/4959f14af6e7/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/e51b8a25f29d/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/9042961c4282/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/529084c935fe/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/a76247419a60/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/4959f14af6e7/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cf/9058910/e51b8a25f29d/gr4.jpg

相似文献

[1]
DAISM-DNN: Highly accurate cell type proportion estimation with data augmentation and deep neural networks.

Patterns (N Y). 2022-2-3

[2]
Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN.

STAR Protoc. 2022-9-16

[3]
Nonlinear SNR estimation based on the data augmentation-assisted DNN with a small-scale dataset.

Opt Express. 2022-10-24

[4]
Effects of the Training Data Condition on Arterial Spin Labeling Parameter Estimation Using a Simulation-Based Supervised Deep Neural Network.

J Comput Assist Tomogr.

[5]
MSSort-DIA: A deep learning classification tool of the peptide precursors quantified by OpenSWATH.

J Proteomics. 2022-5-15

[6]
Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.

BMC Syst Biol. 2016-8-1

[7]
Improving the Classification Effectiveness of Intrusion Detection by Using Improved Conditional Variational AutoEncoder and Deep Neural Network.

Sensors (Basel). 2019-6-2

[8]
Deep neural network for estimating low density lipoprotein cholesterol.

Clin Chim Acta. 2018-11-15

[9]
Prognostic prediction of carcinoma by a differential-regulatory-network-embedded deep neural network.

Comput Biol Chem. 2020-10

[10]
Prioritizing prognostic-associated subpopulations and individualized recurrence risk signatures from single-cell transcriptomes of colorectal cancer.

Brief Bioinform. 2023-5-19

引用本文的文献

[1]
Cell type heterogeneity in gene co-expression networks: implications for toxicological research.

Brief Bioinform. 2025-7-2

[2]
Deep learning based deconvolution methods: A systematic review.

Comput Struct Biotechnol J. 2025-6-11

[3]
Robustness and resilience of computational deconvolution methods for bulk RNA sequencing data.

Brief Bioinform. 2025-5-1

[4]
BuDDI: Bulk Deconvolution with Domain Invariance to predict cell-type-specific perturbations from bulk.

PLoS Comput Biol. 2025-1-17

[5]
DeSide: A unified deep learning approach for cellular deconvolution of tumor microenvironment.

Proc Natl Acad Sci U S A. 2024-11-12

[6]
Community assessment of methods to deconvolve cellular composition from bulk gene expression.

Nat Commun. 2024-8-27

[7]
Adaptive digital tissue deconvolution.

Bioinformatics. 2024-6-28

[8]
Fourteen years of cellular deconvolution: methodology, applications, technical evaluation and outstanding challenges.

Nucleic Acids Res. 2024-5-22

[9]
BuDDI: to predict cell-type-specific perturbations from bulk.

bioRxiv. 2024-4-4

[10]
Editorial: Integrative analysis of single-cell and/or bulk multi-omics sequencing data.

Front Genet. 2023-1-4

本文引用的文献

[1]
EMeth: An EM algorithm for cell type decomposition based on DNA methylation data.

Sci Rep. 2021-3-11

[2]
Deep learning-based cell composition analysis from tissue expression profiles.

Sci Adv. 2020-7-22

[3]
MethylNet: an automated and modular deep learning approach for DNA methylation analysis.

BMC Bioinformatics. 2020-3-17

[4]
Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.

Bioinformatics. 2019-7-15

[5]
Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data.

Genome Med. 2019-5-24

[6]
Determining cell type abundance and expression from bulk tissues with digital cytometry.

Nat Biotechnol. 2019-5-6

[7]
Deep learning: new computational modelling techniques for genomics.

Nat Rev Genet. 2019-7

[8]
RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types.

Cell Rep. 2019-2-5

[9]
Macrophages as regulators of tumour immunity and immunotherapy.

Nat Rev Immunol. 2019-6

[10]
Bulk tissue cell type deconvolution with multi-subject single-cell expression reference.

Nat Commun. 2019-1-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索