Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto Biosanitario Granada (IBS-Granada), Granada, Spain.
Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain.
J Clin Epidemiol. 2022 Aug;148:124-134. doi: 10.1016/j.jclinepi.2022.04.027. Epub 2022 May 2.
A rapidly developing scenario like a pandemic requires the prompt production of high-quality systematic reviews, which can be automated using artificial intelligence (AI) techniques. We evaluated the application of AI tools in COVID-19 evidence syntheses.
After prospective registration of the review protocol, we automated the download of all open-access COVID-19 systematic reviews in the COVID-19 Living Overview of Evidence database, indexed them for AI-related keywords, and located those that used AI tools. We compared their journals' JCR Impact Factor, citations per month, screening workloads, completion times (from pre-registration to preprint or submission to a journal) and AMSTAR-2 methodology assessments (maximum score 13 points) with a set of publication date matched control reviews without AI.
Of the 3,999 COVID-19 reviews, 28 (0.7%, 95% CI 0.47-1.03%) made use of AI. On average, compared to controls (n = 64), AI reviews were published in journals with higher Impact Factors (median 8.9 vs. 3.5, P < 0.001), and screened more abstracts per author (302.2 vs. 140.3, P = 0.009) and per included study (189.0 vs. 365.8, P < 0.001) while inspecting less full texts per author (5.3 vs. 14.0, P = 0.005). No differences were found in citation counts (0.5 vs. 0.6, P = 0.600), inspected full texts per included study (3.8 vs. 3.4, P = 0.481), completion times (74.0 vs. 123.0, P = 0.205) or AMSTAR-2 (7.5 vs. 6.3, P = 0.119).
AI was an underutilized tool in COVID-19 systematic reviews. Its usage, compared to reviews without AI, was associated with more efficient screening of literature and higher publication impact. There is scope for the application of AI in automating systematic reviews.
像大流行这样快速发展的情况需要及时生成高质量的系统评价,可以使用人工智能 (AI) 技术实现自动化。我们评估了 AI 工具在 COVID-19 证据综合中的应用。
在系统评价方案预先注册后,我们自动下载 COVID-19 生活证据概览数据库中所有开放获取的 COVID-19 系统评价,为它们标记与 AI 相关的关键词,并确定那些使用 AI 工具的评价。我们将这些评价的期刊 JCR 影响因子、每月引用量、筛选工作量、完成时间(从预先注册到预印本或提交给期刊)以及 AMSTAR-2 方法评估(最高得分为 13 分)与一组具有匹配发表日期的非 AI 对照评价进行比较。
在 3999 篇 COVID-19 综述中,有 28 篇(0.7%,95%CI 0.47-1.03%)使用了 AI。与对照组(n=64)相比,平均而言,AI 综述发表在影响因子较高的期刊上(中位数 8.9 与 3.5,P<0.001),每个作者筛选的摘要数量更多(302.2 与 140.3,P=0.009)和每个纳入研究筛选的摘要更多(189.0 与 365.8,P<0.001),而每个作者检查的全文数量更少(5.3 与 14.0,P=0.005)。在引用次数(0.5 与 0.6,P=0.600)、每个纳入研究检查的全文数量(3.8 与 3.4,P=0.481)、完成时间(74.0 与 123.0,P=0.205)或 AMSTAR-2(7.5 与 6.3,P=0.119)方面,两组间没有差异。
AI 在 COVID-19 系统评价中未得到充分利用。与无 AI 评价相比,其使用与文献筛选更高效和更高的发表影响力相关。在系统评价自动化中应用 AI 有一定的空间。